論文の概要: Convergence of End-to-End Training in Deep Unsupervised Contrastive
Learning
- arxiv url: http://arxiv.org/abs/2002.06979v3
- Date: Sun, 30 May 2021 17:23:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-31 12:08:13.652499
- Title: Convergence of End-to-End Training in Deep Unsupervised Contrastive
Learning
- Title(参考訳): 深層教師なしコントラスト学習におけるエンドツーエンド学習の収束性
- Authors: Zixin Wen
- Abstract要約: 教師なしのコントラスト学習は、ラベルのないデータから表現を学習するための強力な方法であることが証明されている。
この研究は、これらの教師なし手法の実践的成功に関する理論的知見を提供する。
- 参考スコア(独自算出の注目度): 3.8073142980733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised contrastive learning has gained increasing attention in the
latest research and has proven to be a powerful method for learning
representations from unlabeled data. However, little theoretical analysis was
known for this framework. In this paper, we study the optimization of deep
unsupervised contrastive learning. We prove that, by applying end-to-end
training that simultaneously updates two deep over-parameterized neural
networks, one can find an approximate stationary solution for the non-convex
contrastive loss. This result is inherently different from the existing
over-parameterized analysis in the supervised setting because, in contrast to
learning a specific target function, unsupervised contrastive learning tries to
encode the unlabeled data distribution into the neural networks, which
generally has no optimal solution. Our analysis provides theoretical insights
into the practical success of these unsupervised pretraining methods.
- Abstract(参考訳): 教師なしコントラスト学習(unsupervised contrastive learning)は、最新の研究で注目を集め、ラベルのないデータから表現を学ぶ強力な方法であることが証明されている。
しかし、この枠組みの理論的分析はほとんど知られていない。
本稿では,教師なしコントラスト学習の最適化について検討する。
2つの深い過パラメータ化されたニューラルネットワークを同時に更新するエンドツーエンドのトレーニングを適用することで、非凸のコントラスト損失に対する近似定常解を見つけることができる。
この結果は、特定の対象関数を学習するのとは対照的に、教師なしコントラスト学習はラベルなしのデータ分布をニューラルネットワークにエンコードしようとするため、教師なし設定における既存の過剰パラメータ解析とは本質的に異なる。
本分析は,これらの教師なし事前学習手法の実際的成功に関する理論的知見を提供する。
関連論文リスト
- Adversarial Training Can Provably Improve Robustness: Theoretical Analysis of Feature Learning Process Under Structured Data [38.44734564565478]
本稿では, 特徴学習理論の観点から, 対角的例と対角的学習アルゴリズムの理論的理解を提供する。
本手法は,頑健な特徴学習を効果的に強化し,非ロバストな特徴学習を抑えることができることを示す。
論文 参考訳(メタデータ) (2024-10-11T03:59:49Z) - Learning Latent Graph Structures and their Uncertainty [63.95971478893842]
グラフニューラルネットワーク(GNN)は、モデル精度を高めるために帰納バイアスとしてリレーショナル情報を使用する。
課題関連関係が不明なため,下流予測タスクを解きながら学習するためのグラフ構造学習手法が提案されている。
論文 参考訳(メタデータ) (2024-05-30T10:49:22Z) - On the Generalization Ability of Unsupervised Pretraining [53.06175754026037]
教師なし学習の最近の進歩は、教師なし事前学習、および微調整がモデル一般化を改善することを示している。
本稿では、教師なし事前学習中に得られた知識の伝達可能性に影響を及ぼす重要な要因をその後の微調整フェーズに照らす新しい理論的枠組みを提案する。
この結果は教師なし事前学習と微調整のパラダイムの理解を深め、より効果的な事前学習アルゴリズムの設計に光を当てることができる。
論文 参考訳(メタデータ) (2024-03-11T16:23:42Z) - Leveraging Unlabeled Data for 3D Medical Image Segmentation through
Self-Supervised Contrastive Learning [3.7395287262521717]
現在の3次元半教師付きセグメンテーション法は、文脈情報の限定的考慮のような重要な課題に直面している。
両者の相違を探索し、活用するために設計された2つの個別のワークを導入し、最終的に誤った予測結果を修正した。
我々は、信頼できない予測と信頼できない予測を区別するために、自己教師付きコントラスト学習パラダイムを採用している。
論文 参考訳(メタデータ) (2023-11-21T14:03:16Z) - An Analytic End-to-End Deep Learning Algorithm based on Collaborative
Learning [5.710971447109949]
本稿では, 完全連結ニューラルネットワーク(FNN)の終端深層学習におけるスムーズなアクティベーション機能を持つ収束解析について述べる。
提案手法は,潜在的な解答の問題を回避するとともに,解答の問題も容易には起こらない。
論文 参考訳(メタデータ) (2023-05-26T08:09:03Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - How does unlabeled data improve generalization in self-training? A
one-hidden-layer theoretical analysis [93.37576644429578]
この研究は、既知の反復的自己学習パラダイムに関する最初の理論的分析を確立する。
トレーニング収束と一般化能力の両面で、ラベルなしデータの利点を実証する。
また、浅部ニューラルネットワークから深部ニューラルネットワークへの実験は、我々の確立した自己学習に関する理論的知見の正しさを正当化するものである。
論文 参考訳(メタデータ) (2022-01-21T02:16:52Z) - Adversarial Robustness with Semi-Infinite Constrained Learning [177.42714838799924]
入力に対する深い学習は、安全クリティカルなドメインでの使用に関して深刻な疑問を提起している。
本稿では,この問題を緩和するために,Langevin Monte Carlo のハイブリッドトレーニング手法を提案する。
当社のアプローチは、最先端のパフォーマンスと堅牢性の間のトレードオフを軽減することができることを示す。
論文 参考訳(メタデータ) (2021-10-29T13:30:42Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
既存の対数学習アプローチは、主にクラスラベルを使用して、誤った予測につながる対数サンプルを生成する。
本稿では,未ラベルデータに対する新たな逆攻撃を提案する。これにより,モデルが摂動データサンプルのインスタンスレベルのアイデンティティを混乱させる。
ラベル付きデータなしで頑健なニューラルネットワークを逆さまにトレーニングするための,自己教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-13T08:24:33Z) - Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks
Trained with the Logistic Loss [0.0]
勾配に基づく手法によるロジスティック(クロスエントロピー)損失を最小限に抑えるために訓練されたニューラルネットワークは、多くの教師付き分類タスクでうまく機能する。
我々は、均一な活性化を伴う無限に広い2層ニューラルネットワークのトレーニングと一般化の挙動を解析する。
論文 参考訳(メタデータ) (2020-02-11T15:42:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。