論文の概要: The Synthesizability of Molecules Proposed by Generative Models
- arxiv url: http://arxiv.org/abs/2002.07007v1
- Date: Mon, 17 Feb 2020 15:41:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-31 12:37:06.363431
- Title: The Synthesizability of Molecules Proposed by Generative Models
- Title(参考訳): 生成モデルによる分子の合成可能性
- Authors: Wenhao Gao, Connor W. Coley
- Abstract要約: 機能性分子の発見は高価で時間を要するプロセスである。
初期の薬物発見への関心が高まる技術のひとつに、デ・ノボの分子生成と最適化がある。
これらの手法は、多目的関数の最大化を目的とした新しい分子構造を示唆することができる。
しかし、これらのアプローチの実用性は、合成可能性の無知によって汚される。
- 参考スコア(独自算出の注目度): 3.032184156362992
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The discovery of functional molecules is an expensive and time-consuming
process, exemplified by the rising costs of small molecule therapeutic
discovery. One class of techniques of growing interest for early-stage drug
discovery is de novo molecular generation and optimization, catalyzed by the
development of new deep learning approaches. These techniques can suggest novel
molecular structures intended to maximize a multi-objective function, e.g.,
suitability as a therapeutic against a particular target, without relying on
brute-force exploration of a chemical space. However, the utility of these
approaches is stymied by ignorance of synthesizability. To highlight the
severity of this issue, we use a data-driven computer-aided synthesis planning
program to quantify how often molecules proposed by state-of-the-art generative
models cannot be readily synthesized. Our analysis demonstrates that there are
several tasks for which these models generate unrealistic molecular structures
despite performing well on popular quantitative benchmarks. Synthetic
complexity heuristics can successfully bias generation toward
synthetically-tractable chemical space, although doing so necessarily detracts
from the primary objective. This analysis suggests that to improve the utility
of these models in real discovery workflows, new algorithm development is
warranted.
- Abstract(参考訳): 機能性分子の発見は高価で時間を要するプロセスであり、小さな分子治療の発見のコストの上昇によって実証される。
早期の創薬への関心を高めている手法の1つは、新しいディープラーニングアプローチの開発によって触媒されるde novo分子生成と最適化である。
これらの技術は、化学空間のブルートフォース探索に頼ることなく、例えば特定の標的に対する治療としての適合性を最大化するための新しい分子構造を提案できる。
しかし、これらのアプローチの有用性は合成可能性の無知によって損なわれている。
この問題の深刻さを強調するため,我々はデータ駆動型コンピュータ支援合成計画プログラムを用いて,最先端生成モデルによって提案された分子が容易に合成できない頻度を定量化する。
これらのモデルが非現実的な分子構造を生成するタスクがいくつか存在することを示した。
合成複雑性ヒューリスティックは、合成引き込み可能な化学空間へのバイアス生成を成功させるが、必ずしも第一目的から外れることはない。
この分析は、実際の発見ワークフローにおけるこれらのモデルの有用性を改善するために、新しいアルゴリズム開発が保証されることを示唆している。
関連論文リスト
- MolMiner: Transformer architecture for fragment-based autoregressive generation of molecular stories [7.366789601705544]
生成過程の化学的妥当性、解釈可能性、可変分子サイズへの柔軟性は、計算材料設計における生成モデルに残る課題の1つである。
本稿では,分子生成を離散的かつ解釈可能なステップの列に分解する自己回帰的手法を提案する。
この結果から,本モデルでは,提案した多目的目標目標に応じて,生成分布を効果的にバイアスすることができることがわかった。
論文 参考訳(メタデータ) (2024-11-10T22:00:55Z) - Latent Chemical Space Searching for Plug-in Multi-objective Molecule Generation [9.442146563809953]
本研究では, 標的親和性, 薬物類似性, 合成性に関連する目的を組み込んだ, 汎用的な「プラグイン」分子生成モデルを構築した。
我々はPSO-ENPを多目的分子生成と最適化のための最適変種として同定する。
論文 参考訳(メタデータ) (2024-04-10T02:37:24Z) - UAlign: Pushing the Limit of Template-free Retrosynthesis Prediction with Unsupervised SMILES Alignment [51.49238426241974]
本稿では,テンプレートのないグラフ・ツー・シーケンスパイプラインであるUAlignを紹介した。
グラフニューラルネットワークとトランスフォーマーを組み合わせることで、分子固有のグラフ構造をより効果的に活用することができる。
論文 参考訳(メタデータ) (2024-03-25T03:23:03Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - CELLS: Cost-Effective Evolution in Latent Space for Goal-Directed
Molecular Generation [23.618366377098614]
本稿では,分子潜在表現ベクトルを最適化した遅延空間におけるコスト効率のよい進化戦略を提案する。
我々は、潜伏空間と観測空間をマッピングするために、事前訓練された分子生成モデルを採用する。
提案手法といくつかの高度な手法を比較した複数の最適化タスクについて広範な実験を行った。
論文 参考訳(メタデータ) (2021-11-30T11:02:18Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z) - ChemoVerse: Manifold traversal of latent spaces for novel molecule
discovery [0.7742297876120561]
所望の化学的性質を持つ分子構造を同定することが不可欠である。
ニューラルネットワークと機械学習を用いた生成モデルの最近の進歩は、薬物のような化合物の仮想ライブラリの設計に広く利用されている。
論文 参考訳(メタデータ) (2020-09-29T12:11:40Z) - Learning To Navigate The Synthetically Accessible Chemical Space Using
Reinforcement Learning [75.95376096628135]
ド・ノボ薬物設計のための強化学習(RL)を利用した新しい前方合成フレームワークを提案する。
このセットアップでは、エージェントは巨大な合成可能な化学空間をナビゲートする。
本研究は,合成可能な化学空間を根本的に拡張する上で,エンド・ツー・エンド・トレーニングが重要なパラダイムであることを示す。
論文 参考訳(メタデータ) (2020-04-26T21:40:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。