論文の概要: Towards Query-Efficient Black-Box Adversary with Zeroth-Order Natural
Gradient Descent
- arxiv url: http://arxiv.org/abs/2002.07891v1
- Date: Tue, 18 Feb 2020 21:48:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-30 19:06:28.085851
- Title: Towards Query-Efficient Black-Box Adversary with Zeroth-Order Natural
Gradient Descent
- Title(参考訳): ゼロ次自然勾配降下を伴うクエリ効率のよいブラックボックス逆流
- Authors: Pu Zhao, Pin-Yu Chen, Siyue Wang, Xue Lin
- Abstract要約: ブラックボックスの敵攻撃手法は、実用性や単純さから特に注目されている。
敵攻撃を設計するためのゼロ階自然勾配降下法(ZO-NGD)を提案する。
ZO-NGDは、最先端攻撃法と比較して、モデルクエリの複雑さが大幅に低い。
- 参考スコア(独自算出の注目度): 92.4348499398224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the great achievements of the modern deep neural networks (DNNs), the
vulnerability/robustness of state-of-the-art DNNs raises security concerns in
many application domains requiring high reliability. Various adversarial
attacks are proposed to sabotage the learning performance of DNN models. Among
those, the black-box adversarial attack methods have received special
attentions owing to their practicality and simplicity. Black-box attacks
usually prefer less queries in order to maintain stealthy and low costs.
However, most of the current black-box attack methods adopt the first-order
gradient descent method, which may come with certain deficiencies such as
relatively slow convergence and high sensitivity to hyper-parameter settings.
In this paper, we propose a zeroth-order natural gradient descent (ZO-NGD)
method to design the adversarial attacks, which incorporates the zeroth-order
gradient estimation technique catering to the black-box attack scenario and the
second-order natural gradient descent to achieve higher query efficiency. The
empirical evaluations on image classification datasets demonstrate that ZO-NGD
can obtain significantly lower model query complexities compared with
state-of-the-art attack methods.
- Abstract(参考訳): 現代のディープニューラルネットワーク(DNN)の大きな成果にもかかわらず、最先端のDNNの脆弱性とロバスト性は、高い信頼性を必要とする多くのアプリケーションドメインにおけるセキュリティ上の懸念を引き起こす。
DNNモデルの学習性能を妨害するために、様々な敵攻撃を提案する。
その中でも,ブラックボックス攻撃手法は実用性と単純さから特に注目されている。
ブラックボックス攻撃は通常、ステルス性と低コストを維持するためにより少ないクエリを好む。
しかし、現在のブラックボックス攻撃法の多くは1次勾配降下法を採用しており、これは比較的遅い収束やハイパーパラメータ設定に対する高い感度といった特定の欠陥を伴っている可能性がある。
本稿では,ブラックボックス攻撃シナリオに対応するゼロ次勾配推定手法と,クエリ効率を高めるために2次自然勾配降下法を組み込んだ,逆攻撃を設計するためのゼロ次自然勾配降下法(zo-ngd)を提案する。
画像分類データセットにおける経験的評価により,zo-ngdは最先端攻撃法と比較して,クエリの複雑度が有意に低いことが示されている。
関連論文リスト
- STBA: Towards Evaluating the Robustness of DNNs for Query-Limited Black-box Scenario [50.37501379058119]
本研究では,クエリ制限シナリオにおいて,悪意のある逆の例を作成するために,空間変換ブラックボックス攻撃(STBA)を提案する。
そこで本研究では,STBAが対向例の認識不能性を効果的に改善し,クエリ制限条件下での攻撃成功率を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-03-30T13:28:53Z) - Query-Efficient Black-box Adversarial Attacks Guided by a Transfer-based
Prior [50.393092185611536]
対象モデルの勾配にアクセスできることなく、敵が敵の例を作らなければならないブラックボックスの敵設定を考える。
従来の手法では、代用ホワイトボックスモデルの転送勾配を用いたり、モデルクエリのフィードバックに基づいて真の勾配を近似しようとした。
偏りサンプリングと勾配平均化に基づく2つの事前誘導型ランダム勾配フリー(PRGF)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-13T04:06:27Z) - Sparse and Imperceptible Adversarial Attack via a Homotopy Algorithm [93.80082636284922]
少数の敵対的攻撃は、数ピクセルを摂動するだけでディープ・ネットワーク(DNN)を騙すことができる。
近年の取り組みは、他の等級のl_infty摂動と組み合わせている。
本稿では,空間的・神経的摂動に対処するホモトピーアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-10T20:11:36Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Enhancing the Transferability of Adversarial Attacks through Variance
Tuning [6.5328074334512]
反復勾配に基づく攻撃手法のクラスを強化するための分散チューニングと呼ばれる新しい方法を提案する。
標準のImageNetデータセットを用いた実験結果から,勾配に基づく敵攻撃の転送性を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2021-03-29T12:41:55Z) - Adversarial example generation with AdaBelief Optimizer and Crop
Invariance [8.404340557720436]
敵攻撃は、安全クリティカルなアプリケーションにおいて堅牢なモデルを評価し、選択するための重要な方法である。
本稿では,AdaBelief Iterative Fast Gradient Method (ABI-FGM)とCrop-Invariant attack Method (CIM)を提案する。
我々の手法は、最先端の勾配に基づく攻撃法よりも成功率が高い。
論文 参考訳(メタデータ) (2021-02-07T06:00:36Z) - Improving Query Efficiency of Black-box Adversarial Attack [75.71530208862319]
ニューラルプロセスに基づくブラックボックス対逆攻撃(NP-Attack)を提案する。
NP-Attackはブラックボックス設定でクエリ数を大幅に削減できる。
論文 参考訳(メタデータ) (2020-09-24T06:22:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。