Towards Query-Efficient Black-Box Adversary with Zeroth-Order Natural
Gradient Descent
- URL: http://arxiv.org/abs/2002.07891v1
- Date: Tue, 18 Feb 2020 21:48:54 GMT
- Title: Towards Query-Efficient Black-Box Adversary with Zeroth-Order Natural
Gradient Descent
- Authors: Pu Zhao, Pin-Yu Chen, Siyue Wang, Xue Lin
- Abstract summary: Black-box adversarial attack methods have received special attentions owing to their practicality and simplicity.
We propose a zeroth-order natural gradient descent (ZO-NGD) method to design the adversarial attacks.
ZO-NGD can obtain significantly lower model query complexities compared with state-of-the-art attack methods.
- Score: 92.4348499398224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the great achievements of the modern deep neural networks (DNNs), the
vulnerability/robustness of state-of-the-art DNNs raises security concerns in
many application domains requiring high reliability. Various adversarial
attacks are proposed to sabotage the learning performance of DNN models. Among
those, the black-box adversarial attack methods have received special
attentions owing to their practicality and simplicity. Black-box attacks
usually prefer less queries in order to maintain stealthy and low costs.
However, most of the current black-box attack methods adopt the first-order
gradient descent method, which may come with certain deficiencies such as
relatively slow convergence and high sensitivity to hyper-parameter settings.
In this paper, we propose a zeroth-order natural gradient descent (ZO-NGD)
method to design the adversarial attacks, which incorporates the zeroth-order
gradient estimation technique catering to the black-box attack scenario and the
second-order natural gradient descent to achieve higher query efficiency. The
empirical evaluations on image classification datasets demonstrate that ZO-NGD
can obtain significantly lower model query complexities compared with
state-of-the-art attack methods.
Related papers
- STBA: Towards Evaluating the Robustness of DNNs for Query-Limited Black-box Scenario [50.37501379058119]
We propose the Spatial Transform Black-box Attack (STBA) to craft formidable adversarial examples in the query-limited scenario.
We show that STBA could effectively improve the imperceptibility of the adversarial examples and remarkably boost the attack success rate under query-limited settings.
arXiv Detail & Related papers (2024-03-30T13:28:53Z) - Query-Efficient Black-box Adversarial Attacks Guided by a Transfer-based
Prior [50.393092185611536]
We consider the black-box adversarial setting, where the adversary needs to craft adversarial examples without access to the gradients of a target model.
Previous methods attempted to approximate the true gradient either by using the transfer gradient of a surrogate white-box model or based on the feedback of model queries.
We propose two prior-guided random gradient-free (PRGF) algorithms based on biased sampling and gradient averaging.
arXiv Detail & Related papers (2022-03-13T04:06:27Z) - Sparse and Imperceptible Adversarial Attack via a Homotopy Algorithm [93.80082636284922]
Sparse adversarial attacks can fool deep networks (DNNs) by only perturbing a few pixels.
Recent efforts combine it with another l_infty perturbation on magnitudes.
We propose a homotopy algorithm to tackle the sparsity and neural perturbation framework.
arXiv Detail & Related papers (2021-06-10T20:11:36Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z) - Enhancing the Transferability of Adversarial Attacks through Variance
Tuning [6.5328074334512]
We propose a new method called variance tuning to enhance the class of iterative gradient based attack methods.
Empirical results on the standard ImageNet dataset demonstrate that our method could significantly improve the transferability of gradient-based adversarial attacks.
arXiv Detail & Related papers (2021-03-29T12:41:55Z) - Adversarial example generation with AdaBelief Optimizer and Crop
Invariance [8.404340557720436]
Adversarial attacks can be an important method to evaluate and select robust models in safety-critical applications.
We propose AdaBelief Iterative Fast Gradient Method (ABI-FGM) and Crop-Invariant attack Method (CIM) to improve the transferability of adversarial examples.
Our method has higher success rates than state-of-the-art gradient-based attack methods.
arXiv Detail & Related papers (2021-02-07T06:00:36Z) - Improving Query Efficiency of Black-box Adversarial Attack [75.71530208862319]
We propose a Neural Process based black-box adversarial attack (NP-Attack)
NP-Attack could greatly decrease the query counts under the black-box setting.
arXiv Detail & Related papers (2020-09-24T06:22:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.