Towards Query-Efficient Black-Box Adversary with Zeroth-Order Natural
Gradient Descent
- URL: http://arxiv.org/abs/2002.07891v1
- Date: Tue, 18 Feb 2020 21:48:54 GMT
- Title: Towards Query-Efficient Black-Box Adversary with Zeroth-Order Natural
Gradient Descent
- Authors: Pu Zhao, Pin-Yu Chen, Siyue Wang, Xue Lin
- Abstract summary: Black-box adversarial attack methods have received special attentions owing to their practicality and simplicity.
We propose a zeroth-order natural gradient descent (ZO-NGD) method to design the adversarial attacks.
ZO-NGD can obtain significantly lower model query complexities compared with state-of-the-art attack methods.
- Score: 92.4348499398224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the great achievements of the modern deep neural networks (DNNs), the
vulnerability/robustness of state-of-the-art DNNs raises security concerns in
many application domains requiring high reliability. Various adversarial
attacks are proposed to sabotage the learning performance of DNN models. Among
those, the black-box adversarial attack methods have received special
attentions owing to their practicality and simplicity. Black-box attacks
usually prefer less queries in order to maintain stealthy and low costs.
However, most of the current black-box attack methods adopt the first-order
gradient descent method, which may come with certain deficiencies such as
relatively slow convergence and high sensitivity to hyper-parameter settings.
In this paper, we propose a zeroth-order natural gradient descent (ZO-NGD)
method to design the adversarial attacks, which incorporates the zeroth-order
gradient estimation technique catering to the black-box attack scenario and the
second-order natural gradient descent to achieve higher query efficiency. The
empirical evaluations on image classification datasets demonstrate that ZO-NGD
can obtain significantly lower model query complexities compared with
state-of-the-art attack methods.
Related papers
Err
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.