STBA: Towards Evaluating the Robustness of DNNs for Query-Limited Black-box Scenario
- URL: http://arxiv.org/abs/2404.00362v2
- Date: Wed, 23 Oct 2024 11:06:02 GMT
- Title: STBA: Towards Evaluating the Robustness of DNNs for Query-Limited Black-box Scenario
- Authors: Renyang Liu, Kwok-Yan Lam, Wei Zhou, Sixing Wu, Jun Zhao, Dongting Hu, Mingming Gong,
- Abstract summary: We propose the Spatial Transform Black-box Attack (STBA) to craft formidable adversarial examples in the query-limited scenario.
We show that STBA could effectively improve the imperceptibility of the adversarial examples and remarkably boost the attack success rate under query-limited settings.
- Score: 50.37501379058119
- License:
- Abstract: Many attack techniques have been proposed to explore the vulnerability of DNNs and further help to improve their robustness. Despite the significant progress made recently, existing black-box attack methods still suffer from unsatisfactory performance due to the vast number of queries needed to optimize desired perturbations. Besides, the other critical challenge is that adversarial examples built in a noise-adding manner are abnormal and struggle to successfully attack robust models, whose robustness is enhanced by adversarial training against small perturbations. There is no doubt that these two issues mentioned above will significantly increase the risk of exposure and result in a failure to dig deeply into the vulnerability of DNNs. Hence, it is necessary to evaluate DNNs' fragility sufficiently under query-limited settings in a non-additional way. In this paper, we propose the Spatial Transform Black-box Attack (STBA), a novel framework to craft formidable adversarial examples in the query-limited scenario. Specifically, STBA introduces a flow field to the high-frequency part of clean images to generate adversarial examples and adopts the following two processes to enhance their naturalness and significantly improve the query efficiency: a) we apply an estimated flow field to the high-frequency part of clean images to generate adversarial examples instead of introducing external noise to the benign image, and b) we leverage an efficient gradient estimation method based on a batch of samples to optimize such an ideal flow field under query-limited settings. Compared to existing score-based black-box baselines, extensive experiments indicated that STBA could effectively improve the imperceptibility of the adversarial examples and remarkably boost the attack success rate under query-limited settings.
Related papers
- AFLOW: Developing Adversarial Examples under Extremely Noise-limited
Settings [7.828994881163805]
deep neural networks (DNNs) are vulnerable to adversarial attacks.
We propose a novel Normalize Flow-based end-to-end attack framework, called AFLOW, to synthesize imperceptible adversarial examples.
Compared with existing methods, AFLOW exhibit superiority in imperceptibility, image quality and attack capability.
arXiv Detail & Related papers (2023-10-15T10:54:07Z) - TSFool: Crafting Highly-Imperceptible Adversarial Time Series through Multi-Objective Attack [6.243453526766042]
We propose an efficient method called TSFool to craft highly-imperceptible adversarial time series for RNN-based TSC.
The core idea is a new global optimization objective known as "Camouflage Coefficient" that captures the imperceptibility of adversarial samples from the class distribution.
Experiments on 11 UCR and UEA datasets showcase that TSFool significantly outperforms six white-box and three black-box benchmark attacks.
arXiv Detail & Related papers (2022-09-14T03:02:22Z) - Query-Efficient and Scalable Black-Box Adversarial Attacks on Discrete
Sequential Data via Bayesian Optimization [10.246596695310176]
We focus on the problem of adversarial attacks against models on discrete sequential data in the black-box setting.
We propose a query-efficient black-box attack using Bayesian optimization, which dynamically computes important positions.
We develop a post-optimization algorithm that finds adversarial examples with smaller perturbation size.
arXiv Detail & Related papers (2022-06-17T06:11:36Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
Adrial training is proved to be the most effective strategy that injects adversarial examples into model training.
We propose a novel adversarial training framework called LAtent bounDary-guided aDvErsarial tRaining.
arXiv Detail & Related papers (2022-06-08T07:40:55Z) - On the Convergence and Robustness of Adversarial Training [134.25999006326916]
Adrial training with Project Gradient Decent (PGD) is amongst the most effective.
We propose a textitdynamic training strategy to increase the convergence quality of the generated adversarial examples.
Our theoretical and empirical results show the effectiveness of the proposed method.
arXiv Detail & Related papers (2021-12-15T17:54:08Z) - Enhanced countering adversarial attacks via input denoising and feature
restoring [15.787838084050957]
Deep neural networks (DNNs) are vulnerable to adversarial examples/samples (AEs) with imperceptible perturbations in clean/original samples.
This paper presents an enhanced countering adversarial attack method IDFR (via Input Denoising and Feature Restoring)
The proposed IDFR is made up of an enhanced input denoiser (ID) and a hidden lossy feature restorer (FR) based on the convex hull optimization.
arXiv Detail & Related papers (2021-11-19T07:34:09Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - Improving Query Efficiency of Black-box Adversarial Attack [75.71530208862319]
We propose a Neural Process based black-box adversarial attack (NP-Attack)
NP-Attack could greatly decrease the query counts under the black-box setting.
arXiv Detail & Related papers (2020-09-24T06:22:56Z) - Towards Query-Efficient Black-Box Adversary with Zeroth-Order Natural
Gradient Descent [92.4348499398224]
Black-box adversarial attack methods have received special attentions owing to their practicality and simplicity.
We propose a zeroth-order natural gradient descent (ZO-NGD) method to design the adversarial attacks.
ZO-NGD can obtain significantly lower model query complexities compared with state-of-the-art attack methods.
arXiv Detail & Related papers (2020-02-18T21:48:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.