Progressive Identification of True Labels for Partial-Label Learning
- URL: http://arxiv.org/abs/2002.08053v3
- Date: Sat, 5 Sep 2020 13:57:10 GMT
- Title: Progressive Identification of True Labels for Partial-Label Learning
- Authors: Jiaqi Lv, Miao Xu, Lei Feng, Gang Niu, Xin Geng, Masashi Sugiyama
- Abstract summary: Partial-label learning (PLL) is a typical weakly supervised learning problem, where each training instance is equipped with a set of candidate labels among which only one is the true label.
Most existing methods elaborately designed as constrained optimizations that must be solved in specific manners, making their computational complexity a bottleneck for scaling up to big data.
This paper proposes a novel framework of classifier with flexibility on the model and optimization algorithm.
- Score: 112.94467491335611
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Partial-label learning (PLL) is a typical weakly supervised learning problem,
where each training instance is equipped with a set of candidate labels among
which only one is the true label. Most existing methods elaborately designed
learning objectives as constrained optimizations that must be solved in
specific manners, making their computational complexity a bottleneck for
scaling up to big data. The goal of this paper is to propose a novel framework
of PLL with flexibility on the model and optimization algorithm. More
specifically, we propose a novel estimator of the classification risk,
theoretically analyze the classifier-consistency, and establish an estimation
error bound. Then we propose a progressive identification algorithm for
approximately minimizing the proposed risk estimator, where the update of the
model and identification of true labels are conducted in a seamless manner. The
resulting algorithm is model-independent and loss-independent, and compatible
with stochastic optimization. Thorough experiments demonstrate it sets the new
state of the art.
Related papers
- An Unbiased Risk Estimator for Partial Label Learning with Augmented Classes [46.663081214928226]
We propose an unbiased risk estimator with theoretical guarantees for PLLAC.
We provide a theoretical analysis of the estimation error bound of PLLAC.
Experiments on benchmark, UCI and real-world datasets demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-09-29T07:36:16Z) - CSOT: Curriculum and Structure-Aware Optimal Transport for Learning with
Noisy Labels [13.807759089431855]
Learning with noisy labels (LNL) poses a significant challenge in training a well-generalized model.
Recent advances have achieved impressive performance by identifying clean labels and corrupted labels for training.
We propose a novel optimal transport (OT) formulation, called Curriculum and Structure-aware Optimal Transport (CSOT)
arXiv Detail & Related papers (2023-12-11T09:12:50Z) - Learning with Complementary Labels Revisited: The Selected-Completely-at-Random Setting Is More Practical [66.57396042747706]
Complementary-label learning is a weakly supervised learning problem.
We propose a consistent approach that does not rely on the uniform distribution assumption.
We find that complementary-label learning can be expressed as a set of negative-unlabeled binary classification problems.
arXiv Detail & Related papers (2023-11-27T02:59:17Z) - Robust Representation Learning for Unreliable Partial Label Learning [86.909511808373]
Partial Label Learning (PLL) is a type of weakly supervised learning where each training instance is assigned a set of candidate labels, but only one label is the ground-truth.
This is known as Unreliable Partial Label Learning (UPLL) that introduces an additional complexity due to the inherent unreliability and ambiguity of partial labels.
We propose the Unreliability-Robust Representation Learning framework (URRL) that leverages unreliability-robust contrastive learning to help the model fortify against unreliable partial labels effectively.
arXiv Detail & Related papers (2023-08-31T13:37:28Z) - Active Learning in the Predict-then-Optimize Framework: A Margin-Based
Approach [5.371816551086118]
We develop a learning method that sequentially decides whether to request the "labels" of feature samples from an unlabeled data stream.
Our active learning method is the first to be directly informed by the decision error induced by the predicted parameters.
arXiv Detail & Related papers (2023-05-11T05:44:36Z) - Complementary Labels Learning with Augmented Classes [22.460256396941528]
Complementary Labels Learning (CLL) arises in many real-world tasks such as private questions classification and online learning.
We propose a novel problem setting called Complementary Labels Learning with Augmented Classes (CLLAC)
By using unlabeled data, we propose an unbiased estimator of classification risk for CLLAC, which is guaranteed to be provably consistent.
arXiv Detail & Related papers (2022-11-19T13:55:27Z) - Meta Objective Guided Disambiguation for Partial Label Learning [44.05801303440139]
We propose a novel framework for partial label learning with meta objective guided disambiguation (MoGD)
MoGD aims to recover the ground-truth label from candidate labels set by solving a meta objective on a small validation set.
The proposed method can be easily implemented by using various deep networks with the ordinary SGD.
arXiv Detail & Related papers (2022-08-26T06:48:01Z) - Learning with Proper Partial Labels [87.65718705642819]
Partial-label learning is a kind of weakly-supervised learning with inexact labels.
We show that this proper partial-label learning framework includes many previous partial-label learning settings.
We then derive a unified unbiased estimator of the classification risk.
arXiv Detail & Related papers (2021-12-23T01:37:03Z) - Minimax Active Learning [61.729667575374606]
Active learning aims to develop label-efficient algorithms by querying the most representative samples to be labeled by a human annotator.
Current active learning techniques either rely on model uncertainty to select the most uncertain samples or use clustering or reconstruction to choose the most diverse set of unlabeled examples.
We develop a semi-supervised minimax entropy-based active learning algorithm that leverages both uncertainty and diversity in an adversarial manner.
arXiv Detail & Related papers (2020-12-18T19:03:40Z) - Semi-Supervised Learning with Meta-Gradient [123.26748223837802]
We propose a simple yet effective meta-learning algorithm in semi-supervised learning.
We find that the proposed algorithm performs favorably against state-of-the-art methods.
arXiv Detail & Related papers (2020-07-08T08:48:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.