Minimax Active Learning
- URL: http://arxiv.org/abs/2012.10467v2
- Date: Tue, 30 Mar 2021 15:31:03 GMT
- Title: Minimax Active Learning
- Authors: Sayna Ebrahimi, William Gan, Dian Chen, Giscard Biamby, Kamyar Salahi,
Michael Laielli, Shizhan Zhu, Trevor Darrell
- Abstract summary: Active learning aims to develop label-efficient algorithms by querying the most representative samples to be labeled by a human annotator.
Current active learning techniques either rely on model uncertainty to select the most uncertain samples or use clustering or reconstruction to choose the most diverse set of unlabeled examples.
We develop a semi-supervised minimax entropy-based active learning algorithm that leverages both uncertainty and diversity in an adversarial manner.
- Score: 61.729667575374606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Active learning aims to develop label-efficient algorithms by querying the
most representative samples to be labeled by a human annotator. Current active
learning techniques either rely on model uncertainty to select the most
uncertain samples or use clustering or reconstruction to choose the most
diverse set of unlabeled examples. While uncertainty-based strategies are
susceptible to outliers, solely relying on sample diversity does not capture
the information available on the main task. In this work, we develop a
semi-supervised minimax entropy-based active learning algorithm that leverages
both uncertainty and diversity in an adversarial manner. Our model consists of
an entropy minimizing feature encoding network followed by an entropy
maximizing classification layer. This minimax formulation reduces the
distribution gap between the labeled/unlabeled data, while a discriminator is
simultaneously trained to distinguish the labeled/unlabeled data. The highest
entropy samples from the classifier that the discriminator predicts as
unlabeled are selected for labeling. We evaluate our method on various image
classification and semantic segmentation benchmark datasets and show superior
performance over the state-of-the-art methods.
Related papers
- Semi-Supervised Variational Adversarial Active Learning via Learning to Rank and Agreement-Based Pseudo Labeling [6.771578432805963]
Active learning aims to alleviate the amount of labor involved in data labeling by automating the selection of unlabeled samples.
We introduce novel techniques that significantly improve the use of abundant unlabeled data during training.
We demonstrate the superior performance of our approach over the state of the art on various image classification and segmentation benchmark datasets.
arXiv Detail & Related papers (2024-08-23T00:35:07Z) - Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
Semi-supervised multi-label learning (SSMLL) is a powerful framework for leveraging unlabeled data to reduce the expensive cost of collecting precise multi-label annotations.
Unlike semi-supervised learning, one cannot select the most probable label as the pseudo-label in SSMLL due to multiple semantics contained in an instance.
We propose a dual-perspective method to generate high-quality pseudo-labels.
arXiv Detail & Related papers (2024-07-26T09:33:53Z) - AllMatch: Exploiting All Unlabeled Data for Semi-Supervised Learning [5.0823084858349485]
We present a novel SSL algorithm named AllMatch, which achieves improved pseudo-label accuracy and a 100% utilization ratio for the unlabeled data.
The results demonstrate that AllMatch consistently outperforms existing state-of-the-art methods.
arXiv Detail & Related papers (2024-06-22T06:59:52Z) - Rethinking Precision of Pseudo Label: Test-Time Adaptation via
Complementary Learning [10.396596055773012]
We propose a novel complementary learning approach to enhance test-time adaptation.
In test-time adaptation tasks, information from the source domain is typically unavailable.
We highlight that the risk function of complementary labels agrees with their Vanilla loss formula.
arXiv Detail & Related papers (2023-01-15T03:36:33Z) - NorMatch: Matching Normalizing Flows with Discriminative Classifiers for
Semi-Supervised Learning [8.749830466953584]
Semi-Supervised Learning (SSL) aims to learn a model using a tiny labeled set and massive amounts of unlabeled data.
In this work we introduce a new framework for SSL named NorMatch.
We demonstrate, through numerical and visual results, that NorMatch achieves state-of-the-art performance on several datasets.
arXiv Detail & Related papers (2022-11-17T15:39:18Z) - Exploiting Diversity of Unlabeled Data for Label-Efficient
Semi-Supervised Active Learning [57.436224561482966]
Active learning is a research area that addresses the issues of expensive labeling by selecting the most important samples for labeling.
We introduce a new diversity-based initial dataset selection algorithm to select the most informative set of samples for initial labeling in the active learning setting.
Also, we propose a novel active learning query strategy, which uses diversity-based sampling on consistency-based embeddings.
arXiv Detail & Related papers (2022-07-25T16:11:55Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
Learning from fully-unlabeled data is challenging in Multimedia Forensics problems, such as Person Re-Identification and Text Authorship Attribution.
Recent self-supervised learning methods have shown to be effective when dealing with fully-unlabeled data in cases where the underlying classes have significant semantic differences.
We propose a strategy to tackle Person Re-Identification and Text Authorship Attribution by enabling learning from unlabeled data even when samples from different classes are not prominently diverse.
arXiv Detail & Related papers (2022-02-07T13:08:11Z) - Dash: Semi-Supervised Learning with Dynamic Thresholding [72.74339790209531]
We propose a semi-supervised learning (SSL) approach that uses unlabeled examples to train models.
Our proposed approach, Dash, enjoys its adaptivity in terms of unlabeled data selection.
arXiv Detail & Related papers (2021-09-01T23:52:29Z) - Learning Gradient Boosted Multi-label Classification Rules [4.842945656927122]
We propose an algorithm for learning multi-label classification rules that is able to minimize decomposable as well as non-decomposable loss functions.
We analyze the abilities and limitations of our approach on synthetic data and evaluate its predictive performance on multi-label benchmarks.
arXiv Detail & Related papers (2020-06-23T21:39:23Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
Partial-label learning (PLL) is a typical weakly supervised learning problem, where each training instance is equipped with a set of candidate labels among which only one is the true label.
Most existing methods elaborately designed as constrained optimizations that must be solved in specific manners, making their computational complexity a bottleneck for scaling up to big data.
This paper proposes a novel framework of classifier with flexibility on the model and optimization algorithm.
arXiv Detail & Related papers (2020-02-19T08:35:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.