Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration versus Algorithmic Behavior, Critical Analysis and Recommendations (from 2020 to 2024)
- URL: http://arxiv.org/abs/2002.08136v5
- Date: Wed, 17 Apr 2024 07:59:26 GMT
- Title: Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration versus Algorithmic Behavior, Critical Analysis and Recommendations (from 2020 to 2024)
- Authors: Daniel Molina, Javier Poyatos, Javier Del Ser, Salvador GarcĂa, Amir Hussain, Francisco Herrera,
- Abstract summary: Bio-inspired optimization methods, which mimic biological processes to solve complex problems, have gained popularity in recent literature.
The exponential rise in the number of bio-inspired algorithms poses a challenge to the future trajectory of this research domain.
- Score: 19.09373077982117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, bio-inspired optimization methods, which mimic biological processes to solve complex problems, have gained popularity in recent literature. The proliferation of proposals prove the growing interest in this field. The increase in nature- and bio-inspired algorithms, applications, and guidelines highlights growing interest in this field. However, the exponential rise in the number of bio-inspired algorithms poses a challenge to the future trajectory of this research domain. Along the five versions of this document, the number of approaches grows incessantly, and where having a new biological description takes precedence over real problem-solving. This document presents two comprehensive taxonomies. One based on principles of biological similarity, and the other one based on operational aspects associated with the iteration of population models that initially have a biological inspiration. Therefore, these taxonomies enable researchers to categorize existing algorithmic developments into well-defined classes, considering two criteria: the source of inspiration, and the behavior exhibited by each algorithm. Using these taxonomies, we classify 518 algorithms based on nature-inspired and bio-inspired principles. Each algorithm within these categories is thoroughly examined, allowing for a critical synthesis of design trends and similarities, and identifying the most analogous classical algorithm for each proposal. From our analysis, we conclude that a poor relationship is often found between the natural inspiration of an algorithm and its behavior. Furthermore, similarities in terms of behavior between different algorithms are greater than what is claimed in their public disclosure: specifically, we show that more than one-fourth of the reviewed solvers are versions of classical algorithms. The conclusions from the analysis of the algorithms lead to several learned lessons.
Related papers
- A Generalized Evolutionary Metaheuristic (GEM) Algorithm for Engineering Optimization [1.6589012298747952]
A major trend in recent years is the use of nature-inspired metaheustic algorithms (NIMA)
There are over 540 algorithms in the literature, and there is no unified framework to understand the search mechanisms of different algorithms.
We propose a generalized evolutionary metaheuristic algorithm to unify more than 20 different algorithms.
arXiv Detail & Related papers (2024-07-02T09:55:15Z) - Regularization-Based Methods for Ordinal Quantification [49.606912965922504]
We study the ordinal case, i.e., the case in which a total order is defined on the set of n>2 classes.
We propose a novel class of regularized OQ algorithms, which outperforms existing algorithms in our experiments.
arXiv Detail & Related papers (2023-10-13T16:04:06Z) - Nature Inspired Evolutionary Swarm Optimizers for Biomedical Image and
Signal Processing -- A Systematic Review [0.0]
The paper reviews 28 latest peer-reviewed relevant articles and 26 nature-inspired algorithms.
It segregates them into thoroughly explored, lesser explored and unexplored categories intending to help readers understand the reliability and exploration stage of each of these algorithms.
arXiv Detail & Related papers (2023-10-02T04:52:46Z) - A Gold Standard Dataset for the Reviewer Assignment Problem [117.59690218507565]
"Similarity score" is a numerical estimate of the expertise of a reviewer in reviewing a paper.
Our dataset consists of 477 self-reported expertise scores provided by 58 researchers.
For the task of ordering two papers in terms of their relevance for a reviewer, the error rates range from 12%-30% in easy cases to 36%-43% in hard cases.
arXiv Detail & Related papers (2023-03-23T16:15:03Z) - Improving RNA Secondary Structure Design using Deep Reinforcement
Learning [69.63971634605797]
We propose a new benchmark of applying reinforcement learning to RNA sequence design, in which the objective function is defined to be the free energy in the sequence's secondary structure.
We show results of the ablation analysis that we do for these algorithms, as well as graphs indicating the algorithm's performance across batches.
arXiv Detail & Related papers (2021-11-05T02:54:06Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
We propose to reformulate the result diversification problem as a bi-objective search problem, and solve it by a multi-objective evolutionary algorithm (EA)
We theoretically prove that the GSEMO can achieve the optimal-time approximation ratio, $1/2$.
When the objective function changes dynamically, the GSEMO can maintain this approximation ratio in running time, addressing the open question proposed by Borodin et al.
arXiv Detail & Related papers (2021-10-18T14:00:22Z) - Deep Algorithm Unrolling for Biomedical Imaging [99.73317152134028]
In this chapter, we review biomedical applications and breakthroughs via leveraging algorithm unrolling.
We trace the origin of algorithm unrolling and provide a comprehensive tutorial on how to unroll iterative algorithms into deep networks.
We conclude the chapter by discussing open challenges, and suggesting future research directions.
arXiv Detail & Related papers (2021-08-15T01:06:26Z) - Nature-Inspired Optimization Algorithms: Research Direction and Survey [0.0]
Nature-inspired algorithms are commonly used for solving the various optimization problems.
We classify nature-inspired algorithms as natural evolution based, swarm intelligence based, biological based, science based and others.
The purpose of this review is to present an exhaustive analysis of various nature-inspired algorithms based on its source of inspiration, basic operators, control parameters, features, variants and area of application where these algorithms have been successfully applied.
arXiv Detail & Related papers (2021-02-08T06:03:36Z) - A Survey On (Stochastic Fractal Search) Algorithm [0.0]
This paper presents a metaheuristic algorithm called Fractal Search, inspired by the natural phenomenon of growth based on a mathematical concept called the fractal.
This paper also focuses on the steps and some example applications of engineering design optimisation problems commonly used in the literature being applied to the proposed algorithm.
arXiv Detail & Related papers (2021-01-25T22:44:04Z) - Critical Analysis: Bat Algorithm based Investigation and Application on
Several Domains [1.1802674324027231]
The idea of the algorithm was taken from the echolocation ability of bats.
Bat Algorithm is given in-depth in terms of backgrounds, characteristics, limitations.
arXiv Detail & Related papers (2021-01-18T19:25:12Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.