Using Hindsight to Anchor Past Knowledge in Continual Learning
- URL: http://arxiv.org/abs/2002.08165v2
- Date: Tue, 2 Mar 2021 08:05:50 GMT
- Title: Using Hindsight to Anchor Past Knowledge in Continual Learning
- Authors: Arslan Chaudhry, Albert Gordo, Puneet K. Dokania, Philip Torr, David
Lopez-Paz
- Abstract summary: In continual learning, the learner faces a stream of data whose distribution changes over time.
Modern neural networks are known to suffer under this setting, as they quickly forget previously acquired knowledge.
In this work, we call anchoring, where the learner uses bilevel optimization to update its knowledge on the current task, while keeping intact the predictions on past tasks.
- Score: 36.271906785418864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In continual learning, the learner faces a stream of data whose distribution
changes over time. Modern neural networks are known to suffer under this
setting, as they quickly forget previously acquired knowledge. To address such
catastrophic forgetting, many continual learning methods implement different
types of experience replay, re-learning on past data stored in a small buffer
known as episodic memory. In this work, we complement experience replay with a
new objective that we call anchoring, where the learner uses bilevel
optimization to update its knowledge on the current task, while keeping intact
the predictions on some anchor points of past tasks. These anchor points are
learned using gradient-based optimization to maximize forgetting, which is
approximated by fine-tuning the currently trained model on the episodic memory
of past tasks. Experiments on several supervised learning benchmarks for
continual learning demonstrate that our approach improves the standard
experience replay in terms of both accuracy and forgetting metrics and for
various sizes of episodic memories.
Related papers
- Continual Learning with Strong Experience Replay [32.154995019080594]
We propose a CL method with Strong Experience Replay (SER)
SER utilizes future experiences mimicked on the current training data, besides distilling past experience from the memory buffer.
Experimental results on multiple image classification datasets show that our SER method surpasses the state-of-the-art methods by a noticeable margin.
arXiv Detail & Related papers (2023-05-23T02:42:54Z) - Detachedly Learn a Classifier for Class-Incremental Learning [11.865788374587734]
We present an analysis that the failure of vanilla experience replay (ER) comes from unnecessary re-learning of previous tasks and incompetence to distinguish current task from the previous ones.
We propose a novel replay strategy task-aware experience replay.
Experimental results show our method outperforms current state-of-the-art methods.
arXiv Detail & Related papers (2023-02-23T01:35:44Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from.
Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the "catastrophic forgetting" of previously seen classes.
One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks.
arXiv Detail & Related papers (2022-10-10T08:27:28Z) - Relational Experience Replay: Continual Learning by Adaptively Tuning
Task-wise Relationship [54.73817402934303]
We propose Experience Continual Replay (ERR), a bi-level learning framework to adaptively tune task-wise to achieve a better stability plasticity' tradeoff.
ERR can consistently improve the performance of all baselines and surpass current state-of-the-art methods.
arXiv Detail & Related papers (2021-12-31T12:05:22Z) - Saliency Guided Experience Packing for Replay in Continual Learning [6.417011237981518]
We propose a new approach for experience replay, where we select the past experiences by looking at the saliency maps.
While learning a new task, we replay these memory patches with appropriate zero-padding to remind the model about its past decisions.
arXiv Detail & Related papers (2021-09-10T15:54:58Z) - Continual Learning via Bit-Level Information Preserving [88.32450740325005]
We study the continual learning process through the lens of information theory.
We propose Bit-Level Information Preserving (BLIP) that preserves the information gain on model parameters.
BLIP achieves close to zero forgetting while only requiring constant memory overheads throughout continual learning.
arXiv Detail & Related papers (2021-05-10T15:09:01Z) - Learning to Continually Learn Rapidly from Few and Noisy Data [19.09933805011466]
Continual learning could be achieved via replay -- by concurrently training externally stored old data while learning a new task.
By employing a meta-learner, which textitlearns a learning rate per parameter per past task, we found that base learners produced strong results when less memory was available.
arXiv Detail & Related papers (2021-03-06T08:29:47Z) - Meta-learning the Learning Trends Shared Across Tasks [123.10294801296926]
Gradient-based meta-learning algorithms excel at quick adaptation to new tasks with limited data.
Existing meta-learning approaches only depend on the current task information during the adaptation.
We propose a 'Path-aware' model-agnostic meta-learning approach.
arXiv Detail & Related papers (2020-10-19T08:06:47Z) - Bilevel Continual Learning [76.50127663309604]
We present a novel framework of continual learning named "Bilevel Continual Learning" (BCL)
Our experiments on continual learning benchmarks demonstrate the efficacy of the proposed BCL compared to many state-of-the-art methods.
arXiv Detail & Related papers (2020-07-30T16:00:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.