Weakly Supervised Semantic Segmentation of Satellite Images for Land
Cover Mapping -- Challenges and Opportunities
- URL: http://arxiv.org/abs/2002.08254v2
- Date: Tue, 28 Apr 2020 13:24:16 GMT
- Title: Weakly Supervised Semantic Segmentation of Satellite Images for Land
Cover Mapping -- Challenges and Opportunities
- Authors: Michael Schmitt, Jonathan Prexl, Patrick Ebel, Lukas Liebel, Xiao
Xiang Zhu
- Abstract summary: Fully automatic large-scale land cover mapping belongs to the core challenges addressed by the remote sensing community.
In spite of recent growth in the availability of satellite observations, accurate training data remains comparably scarce.
This paper seeks to make a case for the application of weakly supervised learning strategies to get the most out of available data sources.
- Score: 15.113606982352513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fully automatic large-scale land cover mapping belongs to the core challenges
addressed by the remote sensing community. Usually, the basis of this task is
formed by (supervised) machine learning models. However, in spite of recent
growth in the availability of satellite observations, accurate training data
remains comparably scarce. On the other hand, numerous global land cover
products exist and can be accessed often free-of-charge. Unfortunately, these
maps are typically of a much lower resolution than modern day satellite
imagery. Besides, they always come with a significant amount of noise, as they
cannot be considered ground truth, but are products of previous
(semi-)automatic prediction tasks. Therefore, this paper seeks to make a case
for the application of weakly supervised learning strategies to get the most
out of available data sources and achieve progress in high-resolution
large-scale land cover mapping. Challenges and opportunities are discussed
based on the SEN12MS dataset, for which also some baseline results are shown.
These baselines indicate that there is still a lot of potential for dedicated
approaches designed to deal with remote sensing-specific forms of weak
supervision.
Related papers
- Cross Pseudo Supervision Framework for Sparsely Labelled Geospatial Images [0.0]
Land Use Land Cover (LULC) mapping is a vital tool for urban and resource planning.
This study introduces a semi-supervised segmentation model for LULC prediction using high-resolution satellite images.
We propose a modified Cross Pseudo Supervision framework to train image segmentation models on sparsely labelled data.
arXiv Detail & Related papers (2024-08-05T11:14:23Z) - DiffusionSat: A Generative Foundation Model for Satellite Imagery [63.2807119794691]
We present DiffusionSat, to date the largest generative foundation model trained on a collection of publicly available large, high-resolution remote sensing datasets.
Our method produces realistic samples and can be used to solve multiple generative tasks including temporal generation, superresolution given multi-spectral inputs and in-painting.
arXiv Detail & Related papers (2023-12-06T16:53:17Z) - A Self-Supervised Approach to Land Cover Segmentation [1.0878040851638]
Land use/land cover change (LULC) maps are integral resources in earth science and agricultural research.
Due to the nature of such maps, the creation of LULC maps is often constrained by the time and human resources necessary to accurately annotate satellite imagery and remote sensing data.
Here, we demonstrate a self-supervised method of land cover segmentation that has no need for high-quality ground truth labels.
arXiv Detail & Related papers (2023-10-27T16:37:36Z) - LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting [65.71129509623587]
Road traffic forecasting plays a critical role in smart city initiatives and has experienced significant advancements thanks to the power of deep learning.
However, the promising results achieved on current public datasets may not be applicable to practical scenarios.
We introduce the LargeST benchmark dataset, which includes a total of 8,600 sensors in California with a 5-year time coverage.
arXiv Detail & Related papers (2023-06-14T05:48:36Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
We propose an approach for creating a multi-modal and large-temporal dataset comprised of publicly available Remote Sensing data.
We use Convolutional Neural Networks (CNN) models that are capable of separating different classes of vegetation.
arXiv Detail & Related papers (2022-09-28T18:51:59Z) - Satellite Image Time Series Analysis for Big Earth Observation Data [50.591267188664666]
This paper describes sits, an open-source R package for satellite image time series analysis using machine learning.
We show that this approach produces high accuracy for land use and land cover maps through a case study in the Cerrado biome.
arXiv Detail & Related papers (2022-04-24T15:23:25Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
We present Embedding Earth a self-supervised contrastive pre-training method for leveraging the large availability of satellite imagery.
We observe significant improvements up to 25% absolute mIoU when pre-trained with our proposed method.
We find that learnt features can generalize between disparate regions opening up the possibility of using the proposed pre-training scheme.
arXiv Detail & Related papers (2022-03-11T16:14:14Z) - Utilizing Satellite Imagery Datasets and Machine Learning Data Models to
Evaluate Infrastructure Change in Undeveloped Regions [0.0]
This research aims to allow automated monitoring for largescale infrastructure projects, such as railways, to determine reliable metrics that define and predict the direction construction initiatives could take.
By utilizing photogrammetric techniques on available satellite data to create 3D Meshes and Digital Surface Models (DSM) we hope to effectively predict transport routes.
arXiv Detail & Related papers (2020-09-01T02:11:14Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
We propose occupancy anticipation, where the agent uses its egocentric RGB-D observations to infer the occupancy state beyond the visible regions.
By exploiting context in both the egocentric views and top-down maps our model successfully anticipates a broader map of the environment.
Our approach is the winning entry in the 2020 Habitat PointNav Challenge.
arXiv Detail & Related papers (2020-08-21T03:16:51Z) - Attentive Weakly Supervised land cover mapping for object-based
satellite image time series data with spatial interpretation [4.549831511476249]
We propose a new deep learning framework, named TASSEL, that is able to intelligently exploit the weak supervision provided by the coarse granularity labels.
Our framework also produces an additional side-information that supports the model interpretability with the aim to make the black box gray.
arXiv Detail & Related papers (2020-04-30T10:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.