論文の概要: Variational Encoder-based Reliable Classification
- arxiv url: http://arxiv.org/abs/2002.08289v2
- Date: Sat, 17 Oct 2020 13:51:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-30 12:50:20.729798
- Title: Variational Encoder-based Reliable Classification
- Title(参考訳): 変分エンコーダに基づく信頼性分類
- Authors: Chitresh Bhushan, Zhaoyuan Yang, Nurali Virani, Naresh Iyer
- Abstract要約: 本稿では,トレーニングデータセットと再建の質を用いて,その信念の正当性を証明できる疫学(EC)を提案する。
提案手法は,意味的に意味のある低次元空間を識別できる変分オートエンコーダに基づく。
その結果, 予測の信頼性が向上し, 対向攻撃を伴う試料の堅牢な同定が可能となった。
- 参考スコア(独自算出の注目度): 5.161531917413708
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning models provide statistically impressive results which might
be individually unreliable. To provide reliability, we propose an Epistemic
Classifier (EC) that can provide justification of its belief using support from
the training dataset as well as quality of reconstruction. Our approach is
based on modified variational auto-encoders that can identify a semantically
meaningful low-dimensional space where perceptually similar instances are close
in $\ell_2$-distance too. Our results demonstrate improved reliability of
predictions and robust identification of samples with adversarial attacks as
compared to baseline of softmax-based thresholding.
- Abstract(参考訳): 機械学習モデルは、個々の信頼できない統計的に印象的な結果を提供する。
信頼性を確保するため,トレーニングデータセットからの支持と再建の質を利用して,その信念を正当化できる疫学的分類器(EC)を提案する。
提案手法は,知覚的に類似したインスタンスが$\ell_2$-distanceに近接している意味的に意味のある低次元空間を識別できる変分自動エンコーダに基づいている。
本研究は,ソフトマックスベースしきい値の基準値と比較し,予測の信頼性の向上と対角攻撃による試料の堅牢な同定を行った。
関連論文リスト
- Variational Classification [51.2541371924591]
我々は,変分オートエンコーダの訓練に用いるエビデンスローバウンド(ELBO)に類似した,モデルの訓練を目的とした変分目的を導出する。
軟質マックス層への入力を潜伏変数のサンプルとして扱うことで, 抽象化された視点から, 潜在的な矛盾が明らかとなった。
我々は、標準ソフトマックス層に見られる暗黙の仮定の代わりに、選択された潜在分布を誘導する。
論文 参考訳(メタデータ) (2023-05-17T17:47:19Z) - Decorrelative Network Architecture for Robust Electrocardiogram
Classification [4.808817930937323]
すべてのシナリオで正確であるネットワークをトレーニングすることはできない。
深層学習法は不確実性を推定するためにモデルパラメータ空間をサンプリングする。
これらのパラメータは、しばしば、敵の攻撃によって悪用される、同じ脆弱性にさらされる。
本稿では,特徴デコレーションとフーリエ分割に基づく新たなアンサンブル手法を提案する。
論文 参考訳(メタデータ) (2022-07-19T02:36:36Z) - Utilizing Class Separation Distance for the Evaluation of Corruption
Robustness of Machine Learning Classifiers [0.6882042556551611]
本稿では,最小クラス分離距離のデータセットから得られるロバストネス距離$epsilon$を使用するテストデータ拡張手法を提案する。
結果として得られるMSCRメトリックは、その破損の堅牢性に関して異なる分類器のデータセット固有の比較を可能にする。
以上の結果から, 単純なデータ拡張によるロバストネストレーニングにより, 精度が若干向上することが示唆された。
論文 参考訳(メタデータ) (2022-06-27T15:56:16Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Transformer Uncertainty Estimation with Hierarchical Stochastic
Attention [8.95459272947319]
本稿では,変圧器に不確実性推定機能を持たせるための新しい手法を提案する。
これは、価値と学習可能なセントロイドのセットに付随する階層的な自己注意を学ぶことで達成される。
我々は、ドメイン内(ID)とドメイン外(OOD)の両方のデータセットを用いて、2つのテキスト分類タスクでモデルを実証的に評価する。
論文 参考訳(メタデータ) (2021-12-27T16:43:31Z) - CC-Cert: A Probabilistic Approach to Certify General Robustness of
Neural Networks [58.29502185344086]
安全クリティカルな機械学習アプリケーションでは、モデルを敵の攻撃から守ることが不可欠である。
意味的に意味のある入力変換に対して、ディープラーニングモデルの証明可能な保証を提供することが重要である。
我々はChernoff-Cramer境界に基づく新しい普遍確率的証明手法を提案する。
論文 参考訳(メタデータ) (2021-09-22T12:46:04Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
各サンプルに割り当てられた擬似ラベルの信頼性を推定・活用し,ノイズラベルの影響を緩和する。
不確実性に基づく最適化は大幅な改善をもたらし、ベンチマークデータセットにおける最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2020-12-16T04:09:04Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Adversarial Robustness of Supervised Sparse Coding [34.94566482399662]
表現を学習すると同時に、正確な一般化境界と堅牢性証明を与えるモデルを考える。
線形エンコーダと組み合わされたスパーシティプロモーティングエンコーダを組み合わせた仮説クラスに着目した。
エンドツーエンドの分類のための堅牢性証明を提供する。
論文 参考訳(メタデータ) (2020-10-22T22:05:21Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。