Multiple Imputation with Denoising Autoencoder using Metamorphic Truth
and Imputation Feedback
- URL: http://arxiv.org/abs/2002.08338v2
- Date: Thu, 25 Jun 2020 02:20:17 GMT
- Title: Multiple Imputation with Denoising Autoencoder using Metamorphic Truth
and Imputation Feedback
- Authors: Haw-minn Lu (1), Giancarlo Perrone (1), Jos\'e Unpingco (1) ((1) Gary
and Mary West Health Institute)
- Abstract summary: We propose a Multiple Imputation model using Denoising Autoencoders to learn the internal representation of data.
We use the novel mechanisms of Metamorphic Truth and Imputation Feedback to maintain statistical integrity of attributes.
Our approach explores the effects of imputation on various missingness mechanisms and patterns of missing data, outperforming other methods in many standard test cases.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although data may be abundant, complete data is less so, due to missing
columns or rows. This missingness undermines the performance of downstream data
products that either omit incomplete cases or create derived completed data for
subsequent processing. Appropriately managing missing data is required in order
to fully exploit and correctly use data. We propose a Multiple Imputation model
using Denoising Autoencoders to learn the internal representation of data.
Furthermore, we use the novel mechanisms of Metamorphic Truth and Imputation
Feedback to maintain statistical integrity of attributes and eliminate bias in
the learning process. Our approach explores the effects of imputation on
various missingness mechanisms and patterns of missing data, outperforming
other methods in many standard test cases.
Related papers
- Approaching Metaheuristic Deep Learning Combos for Automated Data Mining [0.5419570023862531]
This work proposes a means of combining meta-heuristic methods with conventional classifiers and neural networks in order to perform automated data mining.
Experiments on the MNIST dataset for handwritten digit recognition were performed.
It was empirically observed that using a ground truth labeled dataset's validation accuracy is inadequate for correcting labels of other previously unseen data instances.
arXiv Detail & Related papers (2024-10-16T10:28:22Z) - Stochastic Amortization: A Unified Approach to Accelerate Feature and Data Attribution [62.71425232332837]
We show that training amortized models with noisy labels is inexpensive and surprisingly effective.
This approach significantly accelerates several feature attribution and data valuation methods, often yielding an order of magnitude speedup over existing approaches.
arXiv Detail & Related papers (2024-01-29T03:42:37Z) - MissDiff: Training Diffusion Models on Tabular Data with Missing Values [29.894691645801597]
This work presents a unified and principled diffusion-based framework for learning from data with missing values.
We first observe that the widely adopted "impute-then-generate" pipeline may lead to a biased learning objective.
We prove the proposed method is consistent in learning the score of data distributions, and the proposed training objective serves as an upper bound for the negative likelihood in certain cases.
arXiv Detail & Related papers (2023-07-02T03:49:47Z) - AI Model Disgorgement: Methods and Choices [127.54319351058167]
We introduce a taxonomy of possible disgorgement methods that are applicable to modern machine learning systems.
We investigate the meaning of "removing the effects" of data in the trained model in a way that does not require retraining from scratch.
arXiv Detail & Related papers (2023-04-07T08:50:18Z) - On-the-fly Denoising for Data Augmentation in Natural Language
Understanding [101.46848743193358]
We propose an on-the-fly denoising technique for data augmentation that learns from soft augmented labels provided by an organic teacher model trained on the cleaner original data.
Our method can be applied to general augmentation techniques and consistently improve the performance on both text classification and question-answering tasks.
arXiv Detail & Related papers (2022-12-20T18:58:33Z) - Improving the Robustness of Summarization Models by Detecting and
Removing Input Noise [50.27105057899601]
We present a large empirical study quantifying the sometimes severe loss in performance from different types of input noise for a range of datasets and model sizes.
We propose a light-weight method for detecting and removing such noise in the input during model inference without requiring any training, auxiliary models, or even prior knowledge of the type of noise.
arXiv Detail & Related papers (2022-12-20T00:33:11Z) - DIVA: Dataset Derivative of a Learning Task [108.18912044384213]
We present a method to compute the derivative of a learning task with respect to a dataset.
A learning task is a function from a training set to the validation error, which can be represented by a trained deep neural network (DNN)
The "dataset derivative" is a linear operator, computed around the trained model, that informs how outliers of the weight of each training sample affect the validation error.
arXiv Detail & Related papers (2021-11-18T16:33:12Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
We propose a causally-aware imputation algorithm (MIRACLE) for missing data.
MIRACLE iteratively refines the imputation of a baseline by simultaneously modeling the missingness generating mechanism.
We conduct extensive experiments on synthetic and a variety of publicly available datasets to show that MIRACLE is able to consistently improve imputation.
arXiv Detail & Related papers (2021-11-04T22:38:18Z) - MAIN: Multihead-Attention Imputation Networks [4.427447378048202]
We propose a novel mechanism based on multi-head attention which can be applied effortlessly in any model.
Our method inductively models patterns of missingness in the input data in order to increase the performance of the downstream task.
arXiv Detail & Related papers (2021-02-10T13:50:02Z) - VAEs in the Presence of Missing Data [6.397263087026567]
We develop a novel latent variable model of a corruption process which generates missing data, and derive a corresponding tractable evidence lower bound (ELBO)
Our model is straightforward to implement, can handle both missing completely at random (MCAR) and missing not at random (MNAR) data, scales to high dimensional inputs and gives both the VAE encoder and decoder access to indicator variables for whether a data element is missing or not.
On the MNIST and SVHN datasets we demonstrate improved marginal log-likelihood of observed data and better missing data imputation, compared to existing approaches.
arXiv Detail & Related papers (2020-06-09T14:40:00Z) - Establishing strong imputation performance of a denoising autoencoder in
a wide range of missing data problems [0.0]
We develop a consistent framework for both training and imputation.
We benchmarked the results against state-of-the-art imputation methods.
The developed autoencoder obtained the smallest error for all ranges of initial data corruption.
arXiv Detail & Related papers (2020-04-06T12:00:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.