DUPRE: Data Utility Prediction for Efficient Data Valuation
- URL: http://arxiv.org/abs/2502.16152v1
- Date: Sat, 22 Feb 2025 08:53:39 GMT
- Title: DUPRE: Data Utility Prediction for Efficient Data Valuation
- Authors: Kieu Thao Nguyen Pham, Rachael Hwee Ling Sim, Quoc Phong Nguyen, See Kiong Ng, Bryan Kian Hsiang Low,
- Abstract summary: Cooperative game theory-based data valuation, such as Data Shapley, requires evaluating the data utility and retraining the ML model for multiple data subsets.<n>Our framework, textttDUPRE, takes an alternative yet complementary approach that reduces the cost per subset evaluation by predicting data utilities instead of evaluating them by model retraining.<n>Specifically, given the evaluated data utilities of some data subsets, textttDUPRE fits a emphGaussian process (GP) regression model to predict the utility of every other data subset.
- Score: 49.60564885180563
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data valuation is increasingly used in machine learning (ML) to decide the fair compensation for data owners and identify valuable or harmful data for improving ML models. Cooperative game theory-based data valuation, such as Data Shapley, requires evaluating the data utility (e.g., validation accuracy) and retraining the ML model for multiple data subsets. While most existing works on efficient estimation of the Shapley values have focused on reducing the number of subsets to evaluate, our framework, \texttt{DUPRE}, takes an alternative yet complementary approach that reduces the cost per subset evaluation by predicting data utilities instead of evaluating them by model retraining. Specifically, given the evaluated data utilities of some data subsets, \texttt{DUPRE} fits a \emph{Gaussian process} (GP) regression model to predict the utility of every other data subset. Our key contribution lies in the design of our GP kernel based on the sliced Wasserstein distance between empirical data distributions. In particular, we show that the kernel is valid and positive semi-definite, encodes prior knowledge of similarities between different data subsets, and can be efficiently computed. We empirically verify that \texttt{DUPRE} introduces low prediction error and speeds up data valuation for various ML models, datasets, and utility functions.
Related papers
- Generalization is not a universal guarantee: Estimating similarity to training data with an ensemble out-of-distribution metric [0.09363323206192666]
Failure of machine learning models to generalize to new data is a core problem limiting the reliability of AI systems.<n>We propose a standardized approach for assessing data similarity by constructing a supervised autoencoder for generalizability estimation (SAGE)<n>We show that out-of-the-box model performance increases after SAGE score filtering, even when applied to data from the model's own training and test datasets.
arXiv Detail & Related papers (2025-02-22T19:21:50Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts.
Existing approaches require re-training models on different data subsets, which is computationally intensive.
This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest.
arXiv Detail & Related papers (2024-06-16T17:09:24Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
We introduce a semi-supervised learning approach based on topological projections in self-organizing maps (SOMs)
Our proposed method first trains SOMs on unlabeled data and then a minimal number of available labeled data points are assigned to key best matching units (BMU)
Our results indicate that the proposed minimally supervised model significantly outperforms traditional regression techniques.
arXiv Detail & Related papers (2024-01-12T22:51:48Z) - Shapley Value on Probabilistic Classifiers [6.163093930860032]
In the context of machine learning (ML), data valuation methods aim to equitably measure the contribution of each data point to the utility of an ML model.
Traditional Shapley-based data valuation methods may not effectively distinguish between beneficial and detrimental training data points.
We propose Probabilistic Shapley (P-Shapley) value by constructing a probability-wise utility function.
arXiv Detail & Related papers (2023-06-12T15:09:13Z) - LAVA: Data Valuation without Pre-Specified Learning Algorithms [20.578106028270607]
We introduce a new framework that can value training data in a way that is oblivious to the downstream learning algorithm.
We develop a proxy for the validation performance associated with a training set based on a non-conventional class-wise Wasserstein distance between training and validation sets.
We show that the distance characterizes the upper bound of the validation performance for any given model under certain Lipschitz conditions.
arXiv Detail & Related papers (2023-04-28T19:05:16Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - Generating Data to Mitigate Spurious Correlations in Natural Language
Inference Datasets [27.562256973255728]
Natural language processing models often exploit spurious correlations between task-independent features and labels in datasets to perform well only within the distributions they are trained on.
We propose to tackle this problem by generating a debiased version of a dataset, which can then be used to train a debiased, off-the-shelf model.
Our approach consists of 1) a method for training data generators to generate high-quality, label-consistent data samples; and 2) a filtering mechanism for removing data points that contribute to spurious correlations.
arXiv Detail & Related papers (2022-03-24T09:08:05Z) - Learning to be a Statistician: Learned Estimator for Number of Distinct
Values [54.629042119819744]
Estimating the number of distinct values (NDV) in a column is useful for many tasks in database systems.
In this work, we focus on how to derive accurate NDV estimations from random (online/offline) samples.
We propose to formulate the NDV estimation task in a supervised learning framework, and aim to learn a model as the estimator.
arXiv Detail & Related papers (2022-02-06T15:42:04Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - RIFLE: Imputation and Robust Inference from Low Order Marginals [10.082738539201804]
We develop a statistical inference framework for regression and classification in the presence of missing data without imputation.
Our framework, RIFLE, estimates low-order moments of the underlying data distribution with corresponding confidence intervals to learn a distributionally robust model.
Our experiments demonstrate that RIFLE outperforms other benchmark algorithms when the percentage of missing values is high and/or when the number of data points is relatively small.
arXiv Detail & Related papers (2021-09-01T23:17:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.