Josephson junction dynamics in a two-dimensional ultracold Bose gas
- URL: http://arxiv.org/abs/2002.08375v1
- Date: Wed, 19 Feb 2020 19:00:03 GMT
- Title: Josephson junction dynamics in a two-dimensional ultracold Bose gas
- Authors: Vijay Pal Singh, Niclas Luick, Lennart Sobirey, and Ludwig Mathey
- Abstract summary: We investigate the scaling of the critical current of Josephson junction dynamics across a barrier potential in a 2D Bose gas.
We derive an analytical estimate for the critical current, which predicts the BKT scaling.
We show the damping of the supercurrent due to phonon excitations in the bulk, and the nucleation of vortex-antivortex pairs in the junction.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the Berezinskii-Kosterlitz-Thouless (BKT) scaling of the
critical current of Josephson junction dynamics across a barrier potential in a
two-dimensional (2D) Bose gas, motivated by recent experiments by Luick
\textit{et al.} arXiv:1908.09776. Using classical-field dynamics, we determine
the dynamical regimes of this system, as a function of temperature and barrier
height. As a central observable we determine the current-phase relation, as a
defining property of these regimes. In addition to the ideal junction regime,
we find a multimode regime, a second-harmonic regime, and an overdamped regime.
For the ideal junction regime, we derive an analytical estimate for the
critical current, which predicts the BKT scaling. We demonstrate this scaling
behavior numerically for varying system sizes. The estimates of the critical
current show excellent agreement with the numerical simulations and the
experiments. Furthermore, we show the damping of the supercurrent due to phonon
excitations in the bulk, and the nucleation of vortex-antivortex pairs in the
junction.
Related papers
- Measurement of total phase fluctuation in cold-atomic quantum simulators [0.0]
We validate our technique numerically and demonstrate its effectiveness by analyzing data from selected experiments simulating 1D quantum field theories.
Our analysis reveals the previously hidden sector of the sum mode of the phase, which is important for studying long-time thermalization and out-of-equilibrium dynamics of the system.
arXiv Detail & Related papers (2024-08-07T12:42:15Z) - Semiclassical descriptions of dissipative dynamics of strongly interacting Bose gases in optical lattices [0.0]
We develop methods for describing real-time dynamics of dissipative Bose-Hubbard systems in a strongly interacting regime.
We numerically demonstrate that the discrete TWA approach is able to qualitatively capture the continuous quantum Zeno effect on dynamics.
arXiv Detail & Related papers (2023-07-30T08:39:06Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Semiclassical bounds on dynamics of two-dimensional interacting
disordered fermions [0.0]
We study quench dynamics of two-dimensional lattice systems consisting of interacting spinless fermions with potential disorder.
We show that the semiclassical dynamics generally relaxes faster than the full quantum dynamics.
We show that strongly disordered one-dimensional and two-dimensional systems exhibit a transient, logarithmic-in-time relaxation.
arXiv Detail & Related papers (2022-09-29T19:11:38Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - dc to ac Josephson transition in a dc atom superconducting quantum
interference device [0.0]
We analyze the effect of the barrier motion on the Bose-Hubbard Hamiltonian of a ring-shaped Bose-Einstein condensate interrupted by a pair of Josephson junctions.
Such an effect is also shown to modify the Heisenberg equation of motion of the boson field operator.
arXiv Detail & Related papers (2020-08-02T17:34:11Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Feedback-induced instabilities and dynamics in the Jaynes-Cummings model [62.997667081978825]
We investigate the coherence and steady-state properties of the Jaynes-Cummings model subjected to time-delayed coherent feedback.
The introduced feedback qualitatively modifies the dynamical response and steady-state quantum properties of the system.
arXiv Detail & Related papers (2020-06-20T10:07:01Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Classical critical dynamics in quadratically driven Kerr resonators [0.0]
Driven-dissipative kerr lattices with two-photon driving are experimentally relevant systems.
We show that the Liouvillian gap scales with the same exponent, similar to scaling of the Hamiltonian gap at quantum phase transitions in closed systems.
arXiv Detail & Related papers (2020-02-14T18:48:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.