Measurement of total phase fluctuation in cold-atomic quantum simulators
- URL: http://arxiv.org/abs/2408.03736v2
- Date: Tue, 15 Oct 2024 10:26:37 GMT
- Title: Measurement of total phase fluctuation in cold-atomic quantum simulators
- Authors: Taufiq Murtadho, Federica Cataldini, Sebastian Erne, Marek Gluza, Mohammadamin Tajik, Jörg Schmiedmayer, Nelly H. Y. Ng,
- Abstract summary: We validate our technique numerically and demonstrate its effectiveness by analyzing data from selected experiments simulating 1D quantum field theories.
Our analysis reveals the previously hidden sector of the sum mode of the phase, which is important for studying long-time thermalization and out-of-equilibrium dynamics of the system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Studying the dynamics of quantum many-body systems is often constrained by the limitations in probing relevant observables, especially in continuous systems. A powerful method to gain information about such systems is the reconstruction of local currents from the continuity equation. Here we extend this approach to extract the total phase fluctuation of adjacent Bose gases. We validate our technique numerically and demonstrate its effectiveness by analyzing data from selected experiments simulating 1D quantum field theories through the phase difference of two 1D Bose gases probed by interference. Our analysis reveals the previously hidden sector of the sum mode of the phase, which is important for studying long-time thermalization and out-of-equilibrium dynamics of the system, thereby expanding the scope and capabilities of cold-atomic quantum simulators.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Squeezing oscillations in a multimode bosonic Josephson junction [0.4335300149154109]
We show how to enhance the quantum correlations in a one-dimensional multimode bosonic Josephson junction.
Our work provides new ways for engineering correlations and entanglement in the external degree of freedom of interacting many-body systems.
arXiv Detail & Related papers (2023-04-05T23:29:05Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Thermodynamic Phase Diagram of Two-Dimensional Bosons in a Quasicrystal
Potential [0.0]
We determine the thermodynamic phase diagram of interacting bosons in a two-dimensional, homogeneous quasicrystal potential.
Our results are found using quantum Monte Carlo simulations.
In particular, we demonstrate stabilization of a genuine Bose glass phase against the normal fluid in sizable parameter ranges.
arXiv Detail & Related papers (2022-10-27T15:09:36Z) - Monitored Quantum Dynamics and the Kitaev Spin Liquid [0.0]
Quantum circuit dynamics with local projective measurements can realize a rich spectrum of entangled states of quantum matter.
Motivated by the physics of the Kitaev quantum spin liquid, we study quantum circuit dynamics in (2+1)-dimensions involving local projective measurements.
arXiv Detail & Related papers (2022-07-06T18:00:07Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Experimental Realization of a Measurement-Induced Entanglement Phase
Transition on a Superconducting Quantum Processor [0.0]
We report the realization of a measurement-induced entanglement transition on superconducting quantum processors with mid-circuit readout capability.
Our work paves the way for the use of mid-circuit measurement as an effective resource for quantum simulation on near-term quantum computers.
arXiv Detail & Related papers (2022-03-08T19:01:04Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Universality of entanglement transitions from stroboscopic to continuous
measurements [68.8204255655161]
We show that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable.
This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
arXiv Detail & Related papers (2020-05-04T21:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.