論文の概要: Bandits with Mean Bounds
- arxiv url: http://arxiv.org/abs/2002.08405v5
- Date: Mon, 28 Oct 2024 01:20:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:18:05.929110
- Title: Bandits with Mean Bounds
- Title(参考訳): 平均境界のバンド
- Authors: Nihal Sharma, Soumya Basu, Karthikeyan Shanmugam, Sanjay Shakkottai,
- Abstract要約: 本研究では,各アームの平均値に有界な側情報を与えるバンディット問題の変種について検討する。
これらがより厳密なガウス因子の推定に変換されることを証明し、これらの推定を利用する新しいアルゴリズムを開発する。
- 参考スコア(独自算出の注目度): 33.00136718515412
- License:
- Abstract: We study a variant of the bandit problem where side information in the form of bounds on the mean of each arm is provided. We prove that these translate to tighter estimates of subgaussian factors and develop novel algorithms that exploit these estimates. In the linear setting, we present the Restricted-set OFUL (R-OFUL) algorithm that additionally uses the geometric properties of the problem to (potentially) restrict the set of arms being played and reduce exploration rates for suboptimal arms. In the stochastic case, we propose the non-optimistic Global Under-Explore (GLUE) algorithm which employs the inferred subgaussian estimates to adapt the rate of exploration for the arms. We analyze the regret of R-OFUL and GLUE, showing that our regret upper bounds are never worse than that of the standard OFUL and UCB algorithms respectively. Further, we also consider a practically motivated setting of learning from confounded logs where mean bounds appear naturally.
- Abstract(参考訳): 本研究では,各アームの平均値に有界な側情報を与えるバンディット問題の変種について検討する。
これらがより厳密なガウス因子の推定に変換されることを証明し、これらの推定を利用する新しいアルゴリズムを開発する。
線形設定では、問題の幾何学的性質を付加的に利用し、(潜在的に)演奏されるアームのセットを制限し、最適なアームの探索率を減少させる制限セット OFUL(R-OFUL)アルゴリズムを提案する。
確率的ケースでは,推定サブガウス推定を用いた非最適グローバルアンダーエクスプローラー(GLUE)アルゴリズムを提案し,アームの探索率に適応する。
我々は,R-OFUL と GLUE の後悔を解析し,我々の後悔の上限は標準 OFUL と UCB のアルゴリズムよりも悪いことはないことを示した。
さらに,平均境界が自然に現れる,連結ログからの学習の実践的な動機付けも検討する。
関連論文リスト
- Causal bandits with backdoor adjustment on unknown Gaussian DAGs [5.807183284468881]
グラフ構造が不明な場合の因果帯域問題について検討する。
連続的に生成された実験データと観測データを用いて各アームのバックドア調整セットを同定する。
最適介入を逐次決定するために,修正された上位信頼境界に基づく新しい帯域幅アルゴリズムを開発した。
論文 参考訳(メタデータ) (2025-02-04T05:18:35Z) - Learning to Explore with Lagrangians for Bandits under Unknown Linear Constraints [8.784438985280094]
線形制約が未知の多腕バンディットにおける純粋探索として問題を研究する。
まず、制約下での純粋な探索のために、サンプルの複雑さを低く抑えたラグランジアン緩和を提案する。
第二に、ラグランジアンの下界と凸の性質を利用して、トラック・アンド・ストップとガミファイド・エクスプローラー(LATSとLAGEX)の2つの計算効率の良い拡張を提案する。
論文 参考訳(メタデータ) (2024-10-24T15:26:14Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
我々は、様々な武器の報酬間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
特に、様々な武器の報酬の間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
論文 参考訳(メタデータ) (2023-12-19T13:17:43Z) - From Optimality to Robustness: Dirichlet Sampling Strategies in
Stochastic Bandits [0.0]
本研究では、腕の観察を再サンプリングした経験的指標のペア比較に基づいて、ジェネリックディリクレサンプリング(DS)アルゴリズムについて検討する。
この戦略の異なる変種は、分布が有界であるときに証明可能な最適後悔保証と、半有界分布に対して軽度量子状態の対数後悔を実現することを示す。
論文 参考訳(メタデータ) (2021-11-18T14:34:21Z) - Mean-based Best Arm Identification in Stochastic Bandits under Reward
Contamination [80.53485617514707]
本稿では,ギャップベースアルゴリズムと逐次除去に基づく2つのアルゴリズムを提案する。
具体的には、ギャップベースのアルゴリズムでは、サンプルの複雑さは定数要素まで最適であり、連続的な除去では対数因子まで最適である。
論文 参考訳(メタデータ) (2021-11-14T21:49:58Z) - A Unifying Theory of Thompson Sampling for Continuous Risk-Averse
Bandits [91.3755431537592]
本稿では,多腕バンディット問題に対するリスク-逆トンプソンサンプリングアルゴリズムの解析を統一する。
大規模偏差理論における収縮原理を用いることで、連続リスク汎関数に対する新しい濃度境界が証明される。
リスク関数の幅広いクラスと「ニセ」関数が連続性条件を満たすことを示す。
論文 参考訳(メタデータ) (2021-08-25T17:09:01Z) - Risk-Constrained Thompson Sampling for CVaR Bandits [82.47796318548306]
CVaR(Conditional Value at Risk)として知られる量的ファイナンスにおける一般的なリスク尺度について考察する。
本稿では,トンプソンサンプリングに基づくCVaR-TSアルゴリズムの性能について検討する。
論文 参考訳(メタデータ) (2020-11-16T15:53:22Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
複数の次元に沿った最先端技術を改善する新しいアルゴリズムを提案する。
非文脈線形帯域の特別な場合において、学習地平線に対して最小限の最適性を確立する。
論文 参考訳(メタデータ) (2020-10-23T09:12:47Z) - Thompson Sampling Algorithms for Mean-Variance Bandits [97.43678751629189]
我々は平均分散MABのためのトンプソンサンプリング型アルゴリズムを開発した。
我々はまた、ガウシアンとベルヌーイの盗賊に対する包括的後悔の分析も提供する。
我々のアルゴリズムは、全てのリスク許容度に対して既存のLCBベースのアルゴリズムを著しく上回っている。
論文 参考訳(メタデータ) (2020-02-01T15:33:50Z) - Bandit algorithms to emulate human decision making using probabilistic
distortions [20.422725678982726]
報奨分布に歪んだ確率を持つ2つの多重武装バンディット問題を定式化する。
以上のような後悔の最小化の問題と、マルチアームバンディットのための最高の腕識別フレームワークについて考察する。
論文 参考訳(メタデータ) (2016-11-30T17:37:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。