On conditional versus marginal bias in multi-armed bandits
- URL: http://arxiv.org/abs/2002.08422v3
- Date: Mon, 22 Feb 2021 21:10:15 GMT
- Title: On conditional versus marginal bias in multi-armed bandits
- Authors: Jaehyeok Shin, Aaditya Ramdas, Alessandro Rinaldo
- Abstract summary: The bias of the sample means of the arms in multi-armed bandits is an important issue in adaptive data analysis.
We characterize the sign of the conditional bias of monotone functions of the rewards, including the sample mean.
Our results hold for arbitrary conditioning events and leverage natural monotonicity properties of the data collection policy.
- Score: 105.07190334523304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The bias of the sample means of the arms in multi-armed bandits is an
important issue in adaptive data analysis that has recently received
considerable attention in the literature. Existing results relate in precise
ways the sign and magnitude of the bias to various sources of data adaptivity,
but do not apply to the conditional inference setting in which the sample means
are computed only if some specific conditions are satisfied. In this paper, we
characterize the sign of the conditional bias of monotone functions of the
rewards, including the sample mean. Our results hold for arbitrary conditioning
events and leverage natural monotonicity properties of the data collection
policy. We further demonstrate, through several examples from sequential
testing and best arm identification, that the sign of the conditional and
marginal bias of the sample mean of an arm can be different, depending on the
conditioning event. Our analysis offers new and interesting perspectives on the
subtleties of assessing the bias in data adaptive settings.
Related papers
- A Simple Remedy for Dataset Bias via Self-Influence: A Mislabeled Sample Perspective [33.78421391776591]
In this paper, we propose a novel perspective of mislabeled sample detection.
We show that our new perspective can boost the precision of detection and rectify biased models effectively.
Our approach is complementary to existing methods, showing performance improvement even when applied to models that have already undergone recent debiasing techniques.
arXiv Detail & Related papers (2024-11-01T04:54:32Z) - Enhancing Intrinsic Features for Debiasing via Investigating Class-Discerning Common Attributes in Bias-Contrastive Pair [36.221761997349795]
Deep neural networks rely on bias attributes that are spuriously correlated with a target class in the presence of dataset bias.
This paper proposes a method that provides the model with explicit spatial guidance that indicates the region of intrinsic features.
Experiments demonstrate that our method achieves state-of-the-art performance on synthetic and real-world datasets with various levels of bias severity.
arXiv Detail & Related papers (2024-04-30T04:13:14Z) - Detecting Adversarial Data by Probing Multiple Perturbations Using
Expected Perturbation Score [62.54911162109439]
Adversarial detection aims to determine whether a given sample is an adversarial one based on the discrepancy between natural and adversarial distributions.
We propose a new statistic called expected perturbation score (EPS), which is essentially the expected score of a sample after various perturbations.
We develop EPS-based maximum mean discrepancy (MMD) as a metric to measure the discrepancy between the test sample and natural samples.
arXiv Detail & Related papers (2023-05-25T13:14:58Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
We propose an effective bias-conflicting scoring method (ECS) to boost the identification accuracy.
We also propose gradient alignment (GA) to balance the contributions of the mined bias-aligned and bias-conflicting samples.
Experiments are conducted on multiple datasets in various settings, demonstrating that the proposed solution can mitigate the impact of unknown biases.
arXiv Detail & Related papers (2023-02-22T14:50:24Z) - Feature-Level Debiased Natural Language Understanding [86.8751772146264]
Existing natural language understanding (NLU) models often rely on dataset biases to achieve high performance on specific datasets.
We propose debiasing contrastive learning (DCT) to mitigate biased latent features and neglect the dynamic nature of bias.
DCT outperforms state-of-the-art baselines on out-of-distribution datasets while maintaining in-distribution performance.
arXiv Detail & Related papers (2022-12-11T06:16:14Z) - Breaking the Spurious Causality of Conditional Generation via Fairness
Intervention with Corrective Sampling [77.15766509677348]
Conditional generative models often inherit spurious correlations from the training dataset.
This can result in label-conditional distributions that are imbalanced with respect to another latent attribute.
We propose a general two-step strategy to mitigate this issue.
arXiv Detail & Related papers (2022-12-05T08:09:33Z) - Adaptive Data Analysis with Correlated Observations [21.969356766737622]
We show that, in some cases, differential privacy guarantees even when there are dependencies within the sample.
We show that the connection between transcript-compression and adaptive data analysis can be extended to the non-iid setting.
arXiv Detail & Related papers (2022-01-21T14:00:30Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
In many application domains such as medicine, information retrieval, cybersecurity, social media, etc., datasets used for inducing classification models often have an unequal distribution of the instances of each class.
This situation, known as imbalanced data classification, causes low predictive performance for the minority class examples.
Oversampling and undersampling techniques are well-known strategies to deal with this problem by balancing the number of examples of each class.
arXiv Detail & Related papers (2021-12-15T18:56:39Z) - Learning Debiased Representation via Disentangled Feature Augmentation [19.348340314001756]
This paper presents an empirical analysis revealing that training with "diverse" bias-conflicting samples is crucial for debiasing.
We propose a novel feature-level data augmentation technique in order to synthesize diverse bias-conflicting samples.
arXiv Detail & Related papers (2021-07-03T08:03:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.