Breaking the Spurious Causality of Conditional Generation via Fairness
Intervention with Corrective Sampling
- URL: http://arxiv.org/abs/2212.02090v2
- Date: Tue, 4 Jul 2023 09:17:49 GMT
- Title: Breaking the Spurious Causality of Conditional Generation via Fairness
Intervention with Corrective Sampling
- Authors: Junhyun Nam, Sangwoo Mo, Jaeho Lee, Jinwoo Shin
- Abstract summary: Conditional generative models often inherit spurious correlations from the training dataset.
This can result in label-conditional distributions that are imbalanced with respect to another latent attribute.
We propose a general two-step strategy to mitigate this issue.
- Score: 77.15766509677348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To capture the relationship between samples and labels, conditional
generative models often inherit spurious correlations from the training
dataset. This can result in label-conditional distributions that are imbalanced
with respect to another latent attribute. To mitigate this issue, which we call
spurious causality of conditional generation, we propose a general two-step
strategy. (a) Fairness Intervention (FI): emphasize the minority samples that
are hard to generate due to the spurious correlation in the training dataset.
(b) Corrective Sampling (CS): explicitly filter the generated samples and
ensure that they follow the desired latent attribute distribution. We have
designed the fairness intervention to work for various degrees of supervision
on the spurious attribute, including unsupervised, weakly-supervised, and
semi-supervised scenarios. Our experimental results demonstrate that FICS can
effectively resolve spurious causality of conditional generation across various
datasets.
Related papers
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Controllable Generation via Locally Constrained Resampling [77.48624621592523]
We propose a tractable probabilistic approach that performs Bayesian conditioning to draw samples subject to a constraint.
Our approach considers the entire sequence, leading to a more globally optimal constrained generation than current greedy methods.
We show that our approach is able to steer the model's outputs away from toxic generations, outperforming similar approaches to detoxification.
arXiv Detail & Related papers (2024-10-17T00:49:53Z) - Trained Models Tell Us How to Make Them Robust to Spurious Correlation without Group Annotation [3.894771553698554]
Empirical Risk Minimization (ERM) models tend to rely on attributes that have high spurious correlation with the target.
This can degrade the performance on underrepresented (or'minority') groups that lack these attributes.
We propose Environment-based Validation and Loss-based Sampling (EVaLS) to enhance robustness to spurious correlation.
arXiv Detail & Related papers (2024-10-07T08:17:44Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
We study a generative framework that seeks to combine the strengths of both: Motivated by a moment-matching objective to mitigate compounding error, we optimize a local (but forward-looking) transition policy.
At inference, the learned policy serves as the generator for iterative sampling, and the learned energy serves as a trajectory-level measure for evaluating sample quality.
arXiv Detail & Related papers (2023-11-02T16:45:25Z) - Selectively increasing the diversity of GAN-generated samples [8.980453507536017]
We propose a novel method to selectively increase the diversity of GAN-generated samples.
We show the superiority of our method in a synthetic benchmark as well as a real-life scenario simulating data from the Zero Degree Calorimeter of ALICE experiment in CERN.
arXiv Detail & Related papers (2022-07-04T16:27:06Z) - Robust Fairness under Covariate Shift [11.151913007808927]
Making predictions that are fair with regard to protected group membership has become an important requirement for classification algorithms.
We propose an approach that obtains the predictor that is robust to the worst-case in terms of target performance.
arXiv Detail & Related papers (2020-10-11T04:42:01Z) - On conditional versus marginal bias in multi-armed bandits [105.07190334523304]
The bias of the sample means of the arms in multi-armed bandits is an important issue in adaptive data analysis.
We characterize the sign of the conditional bias of monotone functions of the rewards, including the sample mean.
Our results hold for arbitrary conditioning events and leverage natural monotonicity properties of the data collection policy.
arXiv Detail & Related papers (2020-02-19T20:16:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.