Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation
- URL: http://arxiv.org/abs/2002.08546v6
- Date: Tue, 1 Jun 2021 09:06:00 GMT
- Title: Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation
- Authors: Jian Liang, Dapeng Hu, and Jiashi Feng
- Abstract summary: Unsupervised adaptationUDA (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain.
Prior UDA methods typically require to access the source data when learning to adapt the model.
This work tackles a practical setting where only a trained source model is available and how we can effectively utilize such a model without source data to solve UDA problems.
- Score: 102.67010690592011
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised domain adaptation (UDA) aims to leverage the knowledge learned
from a labeled source dataset to solve similar tasks in a new unlabeled domain.
Prior UDA methods typically require to access the source data when learning to
adapt the model, making them risky and inefficient for decentralized private
data. This work tackles a practical setting where only a trained source model
is available and investigates how we can effectively utilize such a model
without source data to solve UDA problems. We propose a simple yet generic
representation learning framework, named \emph{Source HypOthesis Transfer}
(SHOT). SHOT freezes the classifier module (hypothesis) of the source model and
learns the target-specific feature extraction module by exploiting both
information maximization and self-supervised pseudo-labeling to implicitly
align representations from the target domains to the source hypothesis. To
verify its versatility, we evaluate SHOT in a variety of adaptation cases
including closed-set, partial-set, and open-set domain adaptation. Experiments
indicate that SHOT yields state-of-the-art results among multiple domain
adaptation benchmarks.
Related papers
- Domain Alignment Meets Fully Test-Time Adaptation [24.546705919244936]
A foundational requirement of a deployed ML model is to generalize to data drawn from a testing distribution that is different from training.
In this paper, we focus on a challenging variant of this problem, where access to the original source data is restricted.
We propose a new approach, CATTAn, that bridges UDA and FTTA, by relaxing the need to access entire source data.
arXiv Detail & Related papers (2022-07-09T03:17:19Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Instance Relation Graph Guided Source-Free Domain Adaptive Object
Detection [79.89082006155135]
Unsupervised Domain Adaptation (UDA) is an effective approach to tackle the issue of domain shift.
UDA methods try to align the source and target representations to improve the generalization on the target domain.
The Source-Free Adaptation Domain (SFDA) setting aims to alleviate these concerns by adapting a source-trained model for the target domain without requiring access to the source data.
arXiv Detail & Related papers (2022-03-29T17:50:43Z) - UMAD: Universal Model Adaptation under Domain and Category Shift [138.12678159620248]
Universal Model ADaptation (UMAD) framework handles both UDA scenarios without access to source data.
We develop an informative consistency score to help distinguish unknown samples from known samples.
Experiments on open-set and open-partial-set UDA scenarios demonstrate that UMAD exhibits comparable, if not superior, performance to state-of-the-art data-dependent methods.
arXiv Detail & Related papers (2021-12-16T01:22:59Z) - Unsupervised Adaptation of Semantic Segmentation Models without Source
Data [14.66682099621276]
We consider the novel problem of unsupervised domain adaptation of source models, without access to the source data for semantic segmentation.
We propose a self-training approach to extract the knowledge from the source model.
Our framework is able to achieve significant performance gains compared to directly applying the source model on the target data.
arXiv Detail & Related papers (2021-12-04T15:13:41Z) - Unsupervised Multi-source Domain Adaptation Without Access to Source
Data [58.551861130011886]
Unsupervised Domain Adaptation (UDA) aims to learn a predictor model for an unlabeled domain by transferring knowledge from a separate labeled source domain.
We propose a novel and efficient algorithm which automatically combines the source models with suitable weights in such a way that it performs at least as good as the best source model.
arXiv Detail & Related papers (2021-04-05T10:45:12Z) - Source-Free Domain Adaptation for Semantic Segmentation [11.722728148523366]
Unsupervised Domain Adaptation (UDA) can tackle the challenge that convolutional neural network-based approaches for semantic segmentation heavily rely on the pixel-level annotated data.
We propose a source-free domain adaptation framework for semantic segmentation, namely SFDA, in which only a well-trained source model and an unlabeled target domain dataset are available for adaptation.
arXiv Detail & Related papers (2021-03-30T14:14:29Z) - Source Data-absent Unsupervised Domain Adaptation through Hypothesis
Transfer and Labeling Transfer [137.36099660616975]
Unsupervised adaptation adaptation (UDA) aims to transfer knowledge from a related but different well-labeled source domain to a new unlabeled target domain.
Most existing UDA methods require access to the source data, and thus are not applicable when the data are confidential and not shareable due to privacy concerns.
This paper aims to tackle a realistic setting with only a classification model available trained over, instead of accessing to the source data.
arXiv Detail & Related papers (2020-12-14T07:28:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.