Unsupervised Adaptation of Semantic Segmentation Models without Source
Data
- URL: http://arxiv.org/abs/2112.02359v1
- Date: Sat, 4 Dec 2021 15:13:41 GMT
- Title: Unsupervised Adaptation of Semantic Segmentation Models without Source
Data
- Authors: Sujoy Paul, Ansh Khurana, Gaurav Aggarwal
- Abstract summary: We consider the novel problem of unsupervised domain adaptation of source models, without access to the source data for semantic segmentation.
We propose a self-training approach to extract the knowledge from the source model.
Our framework is able to achieve significant performance gains compared to directly applying the source model on the target data.
- Score: 14.66682099621276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the novel problem of unsupervised domain adaptation of source
models, without access to the source data for semantic segmentation.
Unsupervised domain adaptation aims to adapt a model learned on the labeled
source data, to a new unlabeled target dataset. Existing methods assume that
the source data is available along with the target data during adaptation.
However, in practical scenarios, we may only have access to the source model
and the unlabeled target data, but not the labeled source, due to reasons such
as privacy, storage, etc. In this work, we propose a self-training approach to
extract the knowledge from the source model. To compensate for the distribution
shift from source to target, we first update only the normalization parameters
of the network with the unlabeled target data. Then we employ
confidence-filtered pseudo labeling and enforce consistencies against certain
transformations. Despite being very simple and intuitive, our framework is able
to achieve significant performance gains compared to directly applying the
source model on the target data as reflected in our extensive experiments and
ablation studies. In fact, the performance is just a few points away from the
recent state-of-the-art methods which use source data for adaptation. We
further demonstrate the generalisability of the proposed approach for fully
test-time adaptation setting, where we do not need any target training data and
adapt only during test-time.
Related papers
- Unsupervised Accuracy Estimation of Deep Visual Models using
Domain-Adaptive Adversarial Perturbation without Source Samples [1.1852406625172216]
We propose a new framework to estimate model accuracy on unlabeled target data without access to source data.
Our approach measures the disagreement rate between the source hypothesis and the target pseudo-labeling function.
Our proposed source-free framework effectively addresses the challenging distribution shift scenarios and outperforms existing methods requiring source data and labels for training.
arXiv Detail & Related papers (2023-07-19T15:33:11Z) - Uncertainty-guided Source-free Domain Adaptation [77.3844160723014]
Source-free domain adaptation (SFDA) aims to adapt a classifier to an unlabelled target data set by only using a pre-trained source model.
We propose quantifying the uncertainty in the source model predictions and utilizing it to guide the target adaptation.
arXiv Detail & Related papers (2022-08-16T08:03:30Z) - Source-Free Domain Adaptive Fundus Image Segmentation with Denoised
Pseudo-Labeling [56.98020855107174]
Domain adaptation typically requires to access source domain data to utilize their distribution information for domain alignment with the target data.
In many real-world scenarios, the source data may not be accessible during the model adaptation in the target domain due to privacy issue.
We present a novel denoised pseudo-labeling method for this problem, which effectively makes use of the source model and unlabeled target data.
arXiv Detail & Related papers (2021-09-19T06:38:21Z) - Unsupervised Multi-source Domain Adaptation Without Access to Source
Data [58.551861130011886]
Unsupervised Domain Adaptation (UDA) aims to learn a predictor model for an unlabeled domain by transferring knowledge from a separate labeled source domain.
We propose a novel and efficient algorithm which automatically combines the source models with suitable weights in such a way that it performs at least as good as the best source model.
arXiv Detail & Related papers (2021-04-05T10:45:12Z) - Source-Free Domain Adaptation for Semantic Segmentation [11.722728148523366]
Unsupervised Domain Adaptation (UDA) can tackle the challenge that convolutional neural network-based approaches for semantic segmentation heavily rely on the pixel-level annotated data.
We propose a source-free domain adaptation framework for semantic segmentation, namely SFDA, in which only a well-trained source model and an unlabeled target domain dataset are available for adaptation.
arXiv Detail & Related papers (2021-03-30T14:14:29Z) - Source-free Domain Adaptation via Distributional Alignment by Matching
Batch Normalization Statistics [85.75352990739154]
We propose a novel domain adaptation method for the source-free setting.
We use batch normalization statistics stored in the pretrained model to approximate the distribution of unobserved source data.
Our method achieves competitive performance with state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-01-19T14:22:33Z) - Source Data-absent Unsupervised Domain Adaptation through Hypothesis
Transfer and Labeling Transfer [137.36099660616975]
Unsupervised adaptation adaptation (UDA) aims to transfer knowledge from a related but different well-labeled source domain to a new unlabeled target domain.
Most existing UDA methods require access to the source data, and thus are not applicable when the data are confidential and not shareable due to privacy concerns.
This paper aims to tackle a realistic setting with only a classification model available trained over, instead of accessing to the source data.
arXiv Detail & Related papers (2020-12-14T07:28:50Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptationUDA (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain.
Prior UDA methods typically require to access the source data when learning to adapt the model.
This work tackles a practical setting where only a trained source model is available and how we can effectively utilize such a model without source data to solve UDA problems.
arXiv Detail & Related papers (2020-02-20T03:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.