論文の概要: Boosting Adversarial Training with Hypersphere Embedding
- arxiv url: http://arxiv.org/abs/2002.08619v3
- Date: Wed, 25 Nov 2020 16:18:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-30 06:23:23.087300
- Title: Boosting Adversarial Training with Hypersphere Embedding
- Title(参考訳): ハイパースフィア埋め込みによる対人訓練の促進
- Authors: Tianyu Pang, Xiao Yang, Yinpeng Dong, Kun Xu, Jun Zhu, Hang Su
- Abstract要約: 敵対的訓練は、ディープラーニングモデルに対する敵対的攻撃に対する最も効果的な防御の1つである。
本研究では,超球埋め込み機構をATプロシージャに組み込むことを提唱する。
我々は,CIFAR-10 と ImageNet データセットに対する幅広い敵対攻撃の下で本手法を検証した。
- 参考スコア(独自算出の注目度): 53.75693100495097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial training (AT) is one of the most effective defenses against
adversarial attacks for deep learning models. In this work, we advocate
incorporating the hypersphere embedding (HE) mechanism into the AT procedure by
regularizing the features onto compact manifolds, which constitutes a
lightweight yet effective module to blend in the strength of representation
learning. Our extensive analyses reveal that AT and HE are well coupled to
benefit the robustness of the adversarially trained models from several
aspects. We validate the effectiveness and adaptability of HE by embedding it
into the popular AT frameworks including PGD-AT, ALP, and TRADES, as well as
the FreeAT and FastAT strategies. In the experiments, we evaluate our methods
under a wide range of adversarial attacks on the CIFAR-10 and ImageNet
datasets, which verifies that integrating HE can consistently enhance the model
robustness for each AT framework with little extra computation.
- Abstract(参考訳): 敵意トレーニング(adversarial training, at)は、ディープラーニングモデルに対する敵意攻撃に対する最も効果的な防御の1つである。
本研究では,超球埋め込み(HE)機構をATプロシージャに組み込むことを提唱し,その特徴をコンパクト多様体に正規化することにより,表現学習の強みをブレンドするための軽量で効果的なモジュールを構成する。
我々の広範な分析により、ATとHEは、いくつかの側面から、敵対的に訓練されたモデルの堅牢性に利益をもたらすためにうまく結合していることが明らかとなった。
PGD-AT, ALP, TRADES, およびFreeATおよびFastAT戦略を含む一般的なATフレームワークに組み込むことで, HEの有効性と適応性を検証する。
実験では,CIFAR-10 と ImageNet のデータセットに対する幅広い逆襲攻撃による手法の評価を行い,HE の統合により各 AT フレームワークのモデルロバスト性を連続的に向上できることを確認した。
関連論文リスト
- Hyper Adversarial Tuning for Boosting Adversarial Robustness of Pretrained Large Vision Models [9.762046320216005]
大きな視覚モデルは敵の例に弱いことが分かっており、敵の強靭性を高める必要性を強調している。
近年の研究では、大規模視覚モデルにおけるローランク適応(LoRA)の逆調整のような堅牢な微調整法が提案されているが、完全なパラメータ逆微調整の精度の一致に苦慮している。
本稿では,モデルロバスト性を効率的にかつ効率的に向上するために,異なる手法間で共有された防御知識を活用するハイパー対戦チューニング(HyperAT)を提案する。
論文 参考訳(メタデータ) (2024-10-08T12:05:01Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
敵対的訓練(AT)は、ディープラーニングモデルの堅牢性を固める上で重要な要素である。
AT方式は、目標モデルの防御のために直接反復的な更新を頼りにしており、不安定な訓練や破滅的なオーバーフィッティングといった障害に頻繁に遭遇する。
汎用プロキシガイド型防衛フレームワークLAST(bf Pbf astから学ぶ)を提案する。
論文 参考訳(メタデータ) (2023-10-19T13:13:41Z) - Revisiting and Advancing Adversarial Training Through A Simple Baseline [7.226961695849204]
我々はSimpleATと呼ばれるシンプルなベースラインアプローチを導入し、最近の手法と競合し、堅牢なオーバーフィッティングを緩和する。
我々はCIFAR-10/100とTiny-ImageNetで広範囲に実験を行い、SimpleATの最先端の敵攻撃に対する堅牢性を検証する。
以上の結果から,SimpleATと先進的対人防御手法の相互関係が明らかとなった。
論文 参考訳(メタデータ) (2023-06-13T08:12:52Z) - Alleviating Robust Overfitting of Adversarial Training With Consistency
Regularization [9.686724616328874]
対戦訓練(AT)は、ディープニューラルネットワーク(DNN)を敵の攻撃から守る最も効果的な方法の1つであることが証明されている。
強靭性は特定の段階で急激に低下し、常にATの間に存在する。
半教師付き学習の一般的なテクニックである一貫性の正規化は、ATと同じような目標を持ち、堅牢なオーバーフィッティングを軽減するために使用できる。
論文 参考訳(メタデータ) (2022-05-24T03:18:43Z) - Enhancing Adversarial Training with Feature Separability [52.39305978984573]
本稿では,特徴分離性を備えた対人訓練(ATFS)により,クラス内特徴の類似性を向上し,クラス間特徴分散を増大させることができる,新たな対人訓練グラフ(ATG)を提案する。
包括的な実験を通じて、提案したATFSフレームワークがクリーンかつロバストなパフォーマンスを著しく改善することを示した。
論文 参考訳(メタデータ) (2022-05-02T04:04:23Z) - Interpolated Joint Space Adversarial Training for Robust and
Generalizable Defenses [82.3052187788609]
敵の訓練(AT)は、敵の攻撃に対する最も信頼できる防御の1つと考えられている。
近年の研究では、新たな脅威モデルの下での対向サンプルによる一般化の改善が示されている。
我々は、JSTM(Joint Space Threat Model)と呼ばれる新しい脅威モデルを提案する。
JSTMでは,新たな敵攻撃・防衛手法が開発されている。
論文 参考訳(メタデータ) (2021-12-12T21:08:14Z) - Mutual Adversarial Training: Learning together is better than going
alone [82.78852509965547]
モデル間の相互作用が知識蒸留による堅牢性に与える影響について検討する。
本稿では,複数のモデルを同時に訓練する相互対人訓練(MAT)を提案する。
MATは、ホワイトボックス攻撃下で、モデル堅牢性と最先端メソッドを効果的に改善することができる。
論文 参考訳(メタデータ) (2021-12-09T15:59:42Z) - Analysis and Applications of Class-wise Robustness in Adversarial
Training [92.08430396614273]
敵の訓練は、敵の例に対するモデルロバスト性を改善するための最も効果的な手法の1つである。
従来の研究は主にモデルの全体的な堅牢性に焦点を当てており、各クラスの役割に関する詳細な分析はいまだに欠落している。
MNIST, CIFAR-10, CIFAR-100, SVHN, STL-10, ImageNetの6つのベンチマークデータセットに対して, 逆トレーニングの詳細な診断を行う。
対戦型学習におけるより強力な攻撃手法は、主に脆弱なクラスに対するより成功した攻撃から、性能の向上を達成することを観察する。
論文 参考訳(メタデータ) (2021-05-29T07:28:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。