論文の概要: A Bayes-Optimal View on Adversarial Examples
- arxiv url: http://arxiv.org/abs/2002.08859v2
- Date: Wed, 17 Mar 2021 09:47:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-30 06:22:20.566442
- Title: A Bayes-Optimal View on Adversarial Examples
- Title(参考訳): 敵対事例のベイズ最適視点
- Authors: Eitan Richardson and Yair Weiss
- Abstract要約: ベイズ最適分類の観点から, 対立例を考察する。
これらの「金の標準」最適分類器が堅牢である場合でも、同じデータセットでトレーニングされたCNNは、常に脆弱な分類器を学習する。
- 参考スコア(独自算出の注目度): 9.51828574518325
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Since the discovery of adversarial examples - the ability to fool modern CNN
classifiers with tiny perturbations of the input, there has been much
discussion whether they are a "bug" that is specific to current neural
architectures and training methods or an inevitable "feature" of high
dimensional geometry. In this paper, we argue for examining adversarial
examples from the perspective of Bayes-Optimal classification. We construct
realistic image datasets for which the Bayes-Optimal classifier can be
efficiently computed and derive analytic conditions on the distributions under
which these classifiers are provably robust against any adversarial attack even
in high dimensions. Our results show that even when these "gold standard"
optimal classifiers are robust, CNNs trained on the same datasets consistently
learn a vulnerable classifier, indicating that adversarial examples are often
an avoidable "bug". We further show that RBF SVMs trained on the same data
consistently learn a robust classifier. The same trend is observed in
experiments with real images in different datasets.
- Abstract(参考訳): 敵対的な例の発見以来、入力の小さな摂動で現代のCNN分類器を騙す能力は、現在のニューラルネットワークやトレーニング手法に特有の「バグ」なのか、高次元幾何学の必然的な「機能」なのか、多くの議論がなされてきた。
本稿では,ベイズ最適分類の観点からの逆例について考察する。
我々は,ベイズ・最適分類器を効率的に計算し,これらの分類器が高次元でも対角攻撃に対して確実に堅牢であるような分布に関する解析条件を導出する現実的な画像データセットを構築した。
これらの「ゴールドスタンダード」最適分類器が堅牢である場合でも、同一データセット上でトレーニングされたCNNは、常に脆弱な分類器を学習し、敵の例がしばしば回避可能な「バグ」であることを示す。
さらに,同一データ上でトレーニングされたrbf svmがロバスト分類器を一貫して学習することを示す。
同じ傾向は、異なるデータセット内の実画像を使った実験でも観察される。
関連論文リスト
- Robustness of Deep Neural Networks for Micro-Doppler Radar
Classification [1.3654846342364308]
同じデータでトレーニングされ、テストされた2つの深い畳み込みアーキテクチャが評価される。
モデルは敵の例に影響を受けやすい。
ドップラー時間よりもケイデンス速度図の表現は、自然に敵の例に対して免疫的であることが示されている。
論文 参考訳(メタデータ) (2024-02-21T09:37:17Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - Counterfactual Image Generation for adversarially robust and
interpretable Classifiers [1.3859669037499769]
本稿では,GAN(Generative Adrial Networks)を基盤として,画像から画像への変換を利用した統合フレームワークを提案する。
これは、分類器と識別器を1つのモデルに組み合わせて、実際の画像をそれぞれのクラスに属性付け、生成されたイメージを「フェイク」として生成することで達成される。
モデルが敵攻撃に対するロバスト性の向上を示すことを示すとともに,判別器の「フェイクネス」値が予測の不確かさの指標となることを示す。
論文 参考訳(メタデータ) (2023-10-01T18:50:29Z) - Unrestricted Adversarial Samples Based on Non-semantic Feature Clusters
Substitution [1.8782750537161608]
モデルトレーニングで学習した突発的関係を利用して, 対向的なサンプルを生成する「制限なし」摂動を導入する。
具体的には,モデル判定結果と強く相関する非意味的特徴に特徴クラスタが存在する。
対象画像の対応する特徴クラスタを置き換えるために,それらを用いて対向サンプルを作成する。
論文 参考訳(メタデータ) (2022-08-31T07:42:36Z) - Smoothed Embeddings for Certified Few-Shot Learning [63.68667303948808]
我々はランダムな平滑化を数ショットの学習モデルに拡張し、入力を正規化された埋め込みにマッピングする。
この結果は、異なるデータセットの実験によって確認される。
論文 参考訳(メタデータ) (2022-02-02T18:19:04Z) - Efficient and Robust Classification for Sparse Attacks [34.48667992227529]
我々は、画像認識、自然言語処理、マルウェア検出の領域において効果的な攻撃として示されてきた$ell$-normで束縛された摂動を考える。
我々は,「トランケーション」と「アドリアル・トレーニング」を組み合わせた新しい防衛手法を提案する。
得られた洞察に触発され、これらのコンポーネントをニューラルネットワーク分類器に拡張する。
論文 参考訳(メタデータ) (2022-01-23T21:18:17Z) - Benign Overfitting in Adversarially Robust Linear Classification [91.42259226639837]
分類器がノイズの多いトレーニングデータを記憶しながらも、優れた一般化性能を達成している「双曲オーバーフィッティング」は、機械学習コミュニティにおいて大きな注目を集めている。
本研究は, 対人訓練において, 対人訓練において, 良心過剰が実際に発生することを示し, 対人訓練に対する防御の原則的アプローチを示す。
論文 参考訳(メタデータ) (2021-12-31T00:27:31Z) - Category-Learning with Context-Augmented Autoencoder [63.05016513788047]
実世界のデータの解釈可能な非冗長表現を見つけることは、機械学習の鍵となる問題の一つである。
本稿では,オートエンコーダのトレーニングにデータ拡張を利用する新しい手法を提案する。
このような方法で変分オートエンコーダを訓練し、補助ネットワークによって変換結果を予測できるようにする。
論文 参考訳(メタデータ) (2020-10-10T14:04:44Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
ディープニューラルネットワークは教師付き学習タスクに有効であるが、脆弱であることが示されている。
本稿では、生成モデルを利用して、分類器が一般化に失敗するインスタンスを特定し、特徴付ける。
我々のアプローチは、トレーニングセットのクラスラベルに依存しないため、半教師付きでトレーニングされたモデルに適用できる。
論文 参考訳(メタデータ) (2020-10-05T22:13:21Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
既存の対数学習アプローチは、主にクラスラベルを使用して、誤った予測につながる対数サンプルを生成する。
本稿では,未ラベルデータに対する新たな逆攻撃を提案する。これにより,モデルが摂動データサンプルのインスタンスレベルのアイデンティティを混乱させる。
ラベル付きデータなしで頑健なニューラルネットワークを逆さまにトレーニングするための,自己教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-13T08:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。