Halpern Iteration for Near-Optimal and Parameter-Free Monotone Inclusion
and Strong Solutions to Variational Inequalities
- URL: http://arxiv.org/abs/2002.08872v3
- Date: Sat, 11 Apr 2020 15:48:39 GMT
- Title: Halpern Iteration for Near-Optimal and Parameter-Free Monotone Inclusion
and Strong Solutions to Variational Inequalities
- Authors: Jelena Diakonikolas
- Abstract summary: We leverage the connections between nonexpansive maps, monotone Lipschitz operators, and proximal mappings to obtain near-optimal solutions to monotone inclusion problems.
These results translate into near-optimal guarantees for approximating strong solutions to variational inequality problems, approximating convex-concave min-max optimization problems, and minimizing the norm of the gradient in min-max optimization problems.
- Score: 14.848525762485872
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We leverage the connections between nonexpansive maps, monotone Lipschitz
operators, and proximal mappings to obtain near-optimal (i.e., optimal up to
poly-log factors in terms of iteration complexity) and parameter-free methods
for solving monotone inclusion problems. These results immediately translate
into near-optimal guarantees for approximating strong solutions to variational
inequality problems, approximating convex-concave min-max optimization
problems, and minimizing the norm of the gradient in min-max optimization
problems. Our analysis is based on a novel and simple potential-based proof of
convergence of Halpern iteration, a classical iteration for finding fixed
points of nonexpansive maps. Additionally, we provide a series of algorithmic
reductions that highlight connections between different problem classes and
lead to lower bounds that certify near-optimality of the studied methods.
Related papers
- Low-Rank Extragradient Methods for Scalable Semidefinite Optimization [0.0]
We focus on high-dimensional and plausible settings in which the problem admits a low-rank solution.
We provide several theoretical results proving that, under these circumstances, the well-known Extragradient method converges to a solution of the constrained optimization problem.
arXiv Detail & Related papers (2024-02-14T10:48:00Z) - A simple uniformly optimal method without line search for convex optimization [9.280355951055865]
We show that line search is superfluous in attaining the optimal rate of convergence for solving a convex optimization problem whose parameters are not given a priori.
We present a novel accelerated gradient descent type algorithm called AC-FGM that can achieve an optimal $mathcalO (1/k2)$ rate of convergence for smooth convex optimization.
arXiv Detail & Related papers (2023-10-16T05:26:03Z) - High-Probability Convergence for Composite and Distributed Stochastic Minimization and Variational Inequalities with Heavy-Tailed Noise [96.80184504268593]
gradient, clipping is one of the key algorithmic ingredients to derive good high-probability guarantees.
Clipping can spoil the convergence of the popular methods for composite and distributed optimization.
arXiv Detail & Related papers (2023-10-03T07:49:17Z) - First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities [91.46841922915418]
We present a unified approach for the theoretical analysis of first-order variation methods.
Our approach covers both non-linear gradient and strongly Monte Carlo problems.
We provide bounds that match the oracle strongly in the case of convex method optimization problems.
arXiv Detail & Related papers (2023-05-25T11:11:31Z) - High-Probability Bounds for Stochastic Optimization and Variational
Inequalities: the Case of Unbounded Variance [59.211456992422136]
We propose algorithms with high-probability convergence results under less restrictive assumptions.
These results justify the usage of the considered methods for solving problems that do not fit standard functional classes in optimization.
arXiv Detail & Related papers (2023-02-02T10:37:23Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
Motivated by recent increased interest in analysis of optimization algorithms for non- optimization in deep networks and other problems in data, we give an overview of recent results of theoretical optimization algorithms for non- optimization.
arXiv Detail & Related papers (2020-12-11T08:28:51Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
We propose a generalization extraient spaces which converges to a stationary point.
The algorithm applies not only to general $p$-normed spaces, but also to general $p$-dimensional vector spaces.
arXiv Detail & Related papers (2020-10-31T21:35:42Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Adaptive First-and Zeroth-order Methods for Weakly Convex Stochastic
Optimization Problems [12.010310883787911]
We analyze a new family of adaptive subgradient methods for solving an important class of weakly convex (possibly nonsmooth) optimization problems.
Experimental results indicate how the proposed algorithms empirically outperform its zerothorder gradient descent and its design variant.
arXiv Detail & Related papers (2020-05-19T07:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.