A simple uniformly optimal method without line search for convex optimization
- URL: http://arxiv.org/abs/2310.10082v3
- Date: Sat, 17 Aug 2024 03:06:14 GMT
- Title: A simple uniformly optimal method without line search for convex optimization
- Authors: Tianjiao Li, Guanghui Lan,
- Abstract summary: We show that line search is superfluous in attaining the optimal rate of convergence for solving a convex optimization problem whose parameters are not given a priori.
We present a novel accelerated gradient descent type algorithm called AC-FGM that can achieve an optimal $mathcalO (1/k2)$ rate of convergence for smooth convex optimization.
- Score: 9.280355951055865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Line search (or backtracking) procedures have been widely employed into first-order methods for solving convex optimization problems, especially those with unknown problem parameters (e.g., Lipschitz constant). In this paper, we show that line search is superfluous in attaining the optimal rate of convergence for solving a convex optimization problem whose parameters are not given a priori. In particular, we present a novel accelerated gradient descent type algorithm called auto-conditioned fast gradient method (AC-FGM) that can achieve an optimal $\mathcal{O}(1/k^2)$ rate of convergence for smooth convex optimization without requiring the estimate of a global Lipschitz constant or the employment of line search procedures. We then extend AC-FGM to solve convex optimization problems with H\"{o}lder continuous gradients and show that it automatically achieves the optimal rates of convergence uniformly for all problem classes with the desired accuracy of the solution as the only input. Finally, we report some encouraging numerical results that demonstrate the advantages of AC-FGM over the previously developed parameter-free methods for convex optimization.
Related papers
- Low-Rank Extragradient Methods for Scalable Semidefinite Optimization [0.0]
We focus on high-dimensional and plausible settings in which the problem admits a low-rank solution.
We provide several theoretical results proving that, under these circumstances, the well-known Extragradient method converges to a solution of the constrained optimization problem.
arXiv Detail & Related papers (2024-02-14T10:48:00Z) - An Accelerated Gradient Method for Convex Smooth Simple Bilevel Optimization [16.709026203727007]
We present a novel bilevel optimization method that locally approximates the solution set of the lower-level problem.
We measure the performance of our method in terms of suboptimality and infeasibility errors.
arXiv Detail & Related papers (2024-02-12T22:34:53Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Accelerated first-order methods for convex optimization with locally
Lipschitz continuous gradient [0.0]
We first consider unconstrained convex optimization with Lipschitz continuous gradient (LLCG) and propose accelerated proximal gradient (APG) methods for solving it.
The proposed APG methods are equipped with a verifiable termination criterion and enjoy an operation complexity of $cal O(varepsilon-1/2log varepsilon-1)$.
Preliminary numerical results are presented to demonstrate the performance of our proposed methods.
arXiv Detail & Related papers (2022-06-02T10:34:26Z) - Non-Convex Optimization with Certificates and Fast Rates Through Kernel
Sums of Squares [68.8204255655161]
We consider potentially non- optimized approximation problems.
In this paper, we propose an algorithm that achieves close to optimal a priori computational guarantees.
arXiv Detail & Related papers (2022-04-11T09:37:04Z) - Implicit differentiation for fast hyperparameter selection in non-smooth
convex learning [87.60600646105696]
We study first-order methods when the inner optimization problem is convex but non-smooth.
We show that the forward-mode differentiation of proximal gradient descent and proximal coordinate descent yield sequences of Jacobians converging toward the exact Jacobian.
arXiv Detail & Related papers (2021-05-04T17:31:28Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
Motivated by recent increased interest in analysis of optimization algorithms for non- optimization in deep networks and other problems in data, we give an overview of recent results of theoretical optimization algorithms for non- optimization.
arXiv Detail & Related papers (2020-12-11T08:28:51Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Adaptive First-and Zeroth-order Methods for Weakly Convex Stochastic
Optimization Problems [12.010310883787911]
We analyze a new family of adaptive subgradient methods for solving an important class of weakly convex (possibly nonsmooth) optimization problems.
Experimental results indicate how the proposed algorithms empirically outperform its zerothorder gradient descent and its design variant.
arXiv Detail & Related papers (2020-05-19T07:44:52Z) - Proximal Gradient Algorithm with Momentum and Flexible Parameter Restart
for Nonconvex Optimization [73.38702974136102]
Various types of parameter restart schemes have been proposed for accelerated algorithms to facilitate their practical convergence in rates.
In this paper, we propose an algorithm for solving nonsmooth problems.
arXiv Detail & Related papers (2020-02-26T16:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.