論文の概要: Affinity and Diversity: Quantifying Mechanisms of Data Augmentation
- arxiv url: http://arxiv.org/abs/2002.08973v2
- Date: Thu, 4 Jun 2020 19:04:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-30 06:22:00.144123
- Title: Affinity and Diversity: Quantifying Mechanisms of Data Augmentation
- Title(参考訳): アフィニティと多様性:データ拡張の定量化メカニズム
- Authors: Raphael Gontijo-Lopes, Sylvia J. Smullin, Ekin D. Cubuk, Ethan Dyer
- Abstract要約: 親和性と多様性(Affinity and Diversity)。
拡張性能は,いずれか単独で予測されるのではなく,共同最適化によって予測される。
- 参考スコア(独自算出の注目度): 25.384464387734802
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Though data augmentation has become a standard component of deep neural
network training, the underlying mechanism behind the effectiveness of these
techniques remains poorly understood. In practice, augmentation policies are
often chosen using heuristics of either distribution shift or augmentation
diversity. Inspired by these, we seek to quantify how data augmentation
improves model generalization. To this end, we introduce interpretable and
easy-to-compute measures: Affinity and Diversity. We find that augmentation
performance is predicted not by either of these alone but by jointly optimizing
the two.
- Abstract(参考訳): データ拡張はディープニューラルネットワークトレーニングの標準コンポーネントとなっているが、これらのテクニックの有効性の基盤となるメカニズムはいまだ理解されていない。
実際には、増補ポリシーは分布シフトまたは増補多様性のヒューリスティックを使って選択されることが多い。
これらに触発されて、データ拡張がモデル一般化をどのように改善するかを定量化する。
この目的のために,親和性と多様性という,解釈可能で計算容易な手段を導入する。
その結果, 拡張性能は, これら2つのみでなく, 共同で最適化することで予測できることがわかった。
関連論文リスト
- AdaAugment: A Tuning-Free and Adaptive Approach to Enhance Data Augmentation [12.697608744311122]
AdaAugmentは、チューニング不要なAdaptive Augmentationメソッドである。
対象ネットワークからのリアルタイムフィードバックに基づいて、個別のトレーニングサンプルの増大度を動的に調整する。
優れた効率を保ちながら、他の最先端のDAメソッドの効率を一貫して上回ります。
論文 参考訳(メタデータ) (2024-05-19T06:54:03Z) - Boosting Model Resilience via Implicit Adversarial Data Augmentation [20.768174896574916]
本稿では, 対向性および対向性摂動分布を組み込むことにより, 試料の深い特性を増大させることを提案する。
そして、この拡張過程が代理損失関数の最適化に近似することを理論的に明らかにする。
我々は4つの共通のバイアス付き学習シナリオにまたがって広範な実験を行う。
論文 参考訳(メタデータ) (2024-04-25T03:22:48Z) - DualAug: Exploiting Additional Heavy Augmentation with OOD Data
Rejection [77.6648187359111]
そこで本稿では,textbfDualAug という新しいデータ拡張手法を提案する。
教師付き画像分類ベンチマークの実験では、DualAugは様々な自動データ拡張法を改善している。
論文 参考訳(メタデータ) (2023-10-12T08:55:10Z) - Implicit Counterfactual Data Augmentation for Robust Learning [24.795542869249154]
本研究では, 突発的相関を除去し, 安定した予測を行うために, インプリシト・カウンセショナル・データ拡張法を提案する。
画像とテキストのデータセットをカバーする様々なバイアス付き学習シナリオで実験が行われてきた。
論文 参考訳(メタデータ) (2023-04-26T10:36:40Z) - Local Magnification for Data and Feature Augmentation [53.04028225837681]
LOMA(Local Magnification)と呼ばれる,実装が容易かつモデルフリーなデータ拡張手法を提案する。
LOMAは、画像の局所領域をランダムに拡大することにより、追加のトレーニングデータを生成する。
実験の結果,提案するLOMAと標準データ拡張を組み合わせることで,画像分類や物体検出の性能を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2022-11-15T02:51:59Z) - Data Augmentation vs. Equivariant Networks: A Theory of Generalization
on Dynamics Forecasting [24.363954435050264]
力学系における対称性の爆発は、ディープラーニングの一般化を改善する強力な方法である。
データ拡張と同変ネットワークは、学習に対称性を注入する2つの主要なアプローチである。
データ拡張と同変ネットワークの一般化境界を導出し、統一されたフレームワークにおける学習に対するそれらの効果を特徴づける。
論文 参考訳(メタデータ) (2022-06-19T17:00:12Z) - Revisiting Consistency Regularization for Semi-Supervised Learning [80.28461584135967]
そこで我々は,FeatDistLossというシンプルな手法により,一貫性の規則化を改良したフレームワークを提案する。
実験結果から,本モデルは様々なデータセットや設定のための新しい技術状態を定義する。
論文 参考訳(メタデータ) (2021-12-10T20:46:13Z) - DivAug: Plug-in Automated Data Augmentation with Explicit Diversity
Maximization [41.82120128496555]
拡張データの多様性に関する2つの要因はまだ欠けている:1)多様性の明示的な定義(したがって測定)と2)多様性とその正規化効果の定量化可能な関係。
分散多様性(Variance Diversity)と呼ばれる多様性尺度を提案し、理論的にはデータ拡張の正規化効果がVariance Diversityによって約束されることを示した。
監視されていないサンプリングベースのフレームワークであるDivAugは、Variance Diversityを直接最大化し、正規化効果を強化するように設計されています。
論文 参考訳(メタデータ) (2021-03-26T16:00:01Z) - CoDA: Contrast-enhanced and Diversity-promoting Data Augmentation for
Natural Language Understanding [67.61357003974153]
我々はCoDAと呼ばれる新しいデータ拡張フレームワークを提案する。
CoDAは、複数の変換を有機的に統合することで、多種多様な情報付加例を合成する。
すべてのデータサンプルのグローバルな関係を捉えるために、対照的な正則化の目的を導入する。
論文 参考訳(メタデータ) (2020-10-16T23:57:03Z) - On the Benefits of Invariance in Neural Networks [56.362579457990094]
データ拡張によるトレーニングは、リスクとその勾配をよりよく見積もることを示し、データ拡張でトレーニングされたモデルに対して、PAC-Bayes一般化を提供する。
また,データ拡張と比べ,平均化は凸損失を伴う場合の一般化誤差を低減し,PAC-Bayes境界を狭めることを示した。
論文 参考訳(メタデータ) (2020-05-01T02:08:58Z) - Generative Data Augmentation for Commonsense Reasoning [75.26876609249197]
G-DAUGCは、低リソース環境でより正確で堅牢な学習を実現することを目的とした、新しい生成データ拡張手法である。
G-DAUGCは、バックトランスレーションに基づく既存のデータ拡張手法を一貫して上回っている。
分析の結果,G-DAUGCは多種多様な流線型学習例を産出し,その選択と学習アプローチが性能向上に重要であることが示された。
論文 参考訳(メタデータ) (2020-04-24T06:12:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。