Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning
- URL: http://arxiv.org/abs/2002.09027v1
- Date: Thu, 20 Feb 2020 21:39:25 GMT
- Title: Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning
- Authors: Chao-Han Huck Yang, Jun Qi, Pin-Yu Chen, Yi Ouyang, I-Te Danny Hung,
Chin-Hui Lee, Xiaoli Ma
- Abstract summary: We introduce timing-based adversarial strategies against a DRL-based navigation system by jamming in physical noise patterns on the selected time frames.
Our experimental results show that the adversarial timing attacks can lead to a significant performance drop.
- Score: 91.13113161754022
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent deep neural networks based techniques, especially those equipped with
the ability of self-adaptation in the system level such as deep reinforcement
learning (DRL), are shown to possess many advantages of optimizing robot
learning systems (e.g., autonomous navigation and continuous robot arm
control.) However, the learning-based systems and the associated models may be
threatened by the risks of intentionally adaptive (e.g., noisy sensor
confusion) and adversarial perturbations from real-world scenarios. In this
paper, we introduce timing-based adversarial strategies against a DRL-based
navigation system by jamming in physical noise patterns on the selected time
frames. To study the vulnerability of learning-based navigation systems, we
propose two adversarial agent models: one refers to online learning; another
one is based on evolutionary learning. Besides, three open-source robot
learning and navigation control environments are employed to study the
vulnerability under adversarial timing attacks. Our experimental results show
that the adversarial timing attacks can lead to a significant performance drop,
and also suggest the necessity of enhancing the robustness of robot learning
systems.
Related papers
- CANEDERLI: On The Impact of Adversarial Training and Transferability on CAN Intrusion Detection Systems [17.351539765989433]
A growing integration of vehicles with external networks has led to a surge in attacks targeting their Controller Area Network (CAN) internal bus.
As a countermeasure, various Intrusion Detection Systems (IDSs) have been suggested in the literature to prevent and mitigate these threats.
Most of these systems rely on data-driven approaches such as Machine Learning (ML) and Deep Learning (DL) models.
In this paper, we present CANEDERLI, a novel framework for securing CAN-based IDSs.
arXiv Detail & Related papers (2024-04-06T14:54:11Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
This paper presents a unified model-based reinforcement learning framework that bridges active exploration and uncertainty-aware deployment.
The two opposing tasks of exploration and deployment are optimized through state-of-the-art sampling-based MPC.
We conduct experiments on both autonomous vehicles and wheeled robots, showing promising results for both exploration and deployment.
arXiv Detail & Related papers (2023-05-20T17:20:12Z) - Don't Start From Scratch: Leveraging Prior Data to Automate Robotic
Reinforcement Learning [70.70104870417784]
Reinforcement learning (RL) algorithms hold the promise of enabling autonomous skill acquisition for robotic systems.
In practice, real-world robotic RL typically requires time consuming data collection and frequent human intervention to reset the environment.
In this work, we study how these challenges can be tackled by effective utilization of diverse offline datasets collected from previously seen tasks.
arXiv Detail & Related papers (2022-07-11T08:31:22Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off.
This work revisits the robustness-accuracy trade-off in robot learning by analyzing if recent advances in robust training methods and theory can make adversarial training suitable for real-world robot applications.
arXiv Detail & Related papers (2022-04-15T08:12:15Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
There are two main algorithmic approaches to autonomous driving systems.
Deep learning alone has achieved state-of-the-art results in many areas.
But sometimes it can be very difficult to debug if the deep learning model doesn't work.
arXiv Detail & Related papers (2022-03-28T20:29:50Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
In this work, we exemplify the potential threat of malicious actors using deep reinforcement learning to train automated agents.
We present an agent that uses a state-of-the-art reinforcement learning algorithm to perform local privilege escalation.
Our agent is usable for generating realistic attack sensor data for training and evaluating intrusion detection systems.
arXiv Detail & Related papers (2021-10-04T12:20:46Z) - Deep Learning-Based Autonomous Driving Systems: A Survey of Attacks and
Defenses [13.161104978510943]
This survey provides a thorough analysis of different attacks that may jeopardize autonomous driving systems.
It covers adversarial attacks for various deep learning models and attacks in both physical and cyber context.
Some promising research directions are suggested in order to improve deep learning-based autonomous driving safety.
arXiv Detail & Related papers (2021-04-05T06:31:47Z) - Adversarial Training is Not Ready for Robot Learning [55.493354071227174]
Adversarial training is an effective method to train deep learning models that are resilient to norm-bounded perturbations.
We show theoretically and experimentally that neural controllers obtained via adversarial training are subjected to three types of defects.
Our results suggest that adversarial training is not yet ready for robot learning.
arXiv Detail & Related papers (2021-03-15T07:51:31Z) - Learning-Based Vulnerability Analysis of Cyber-Physical Systems [10.066594071800337]
This work focuses on the use of deep learning for vulnerability analysis of cyber-physical systems.
We consider a control architecture widely used in CPS (e.g., robotics) where the low-level control is based on e.g., the extended Kalman filter (EKF) and an anomaly detector.
To facilitate analyzing the impact potential sensing attacks could have, our objective is to develop learning-enabled attack generators.
arXiv Detail & Related papers (2021-03-10T06:52:26Z) - A Secure Learning Control Strategy via Dynamic Camouflaging for Unknown
Dynamical Systems under Attacks [0.0]
This paper presents a secure reinforcement learning (RL) based control method for unknown linear time-invariant cyber-physical systems (CPSs)
We consider the attack scenario where the attacker learns about the dynamic model during the exploration phase of the learning conducted by the designer.
We propose a dynamic camouflaging based attack-resilient reinforcement learning (ARRL) algorithm which can learn the desired optimal controller for the dynamic system.
arXiv Detail & Related papers (2021-02-01T00:34:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.