Adversarial Training is Not Ready for Robot Learning
- URL: http://arxiv.org/abs/2103.08187v1
- Date: Mon, 15 Mar 2021 07:51:31 GMT
- Title: Adversarial Training is Not Ready for Robot Learning
- Authors: Mathias Lechner, Ramin Hasani, Radu Grosu, Daniela Rus, Thomas A.
Henzinger
- Abstract summary: Adversarial training is an effective method to train deep learning models that are resilient to norm-bounded perturbations.
We show theoretically and experimentally that neural controllers obtained via adversarial training are subjected to three types of defects.
Our results suggest that adversarial training is not yet ready for robot learning.
- Score: 55.493354071227174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial training is an effective method to train deep learning models
that are resilient to norm-bounded perturbations, with the cost of nominal
performance drop. While adversarial training appears to enhance the robustness
and safety of a deep model deployed in open-world decision-critical
applications, counterintuitively, it induces undesired behaviors in robot
learning settings. In this paper, we show theoretically and experimentally that
neural controllers obtained via adversarial training are subjected to three
types of defects, namely transient, systematic, and conditional errors. We
first generalize adversarial training to a safety-domain optimization scheme
allowing for more generic specifications. We then prove that such a learning
process tends to cause certain error profiles. We support our theoretical
results by a thorough experimental safety analysis in a robot-learning task.
Our results suggest that adversarial training is not yet ready for robot
learning.
Related papers
- Model-Based Runtime Monitoring with Interactive Imitation Learning [30.70994322652745]
This work aims to endow a robot with the ability to monitor and detect errors during task execution.
We introduce a model-based runtime monitoring algorithm that learns from deployment data to detect system anomalies and anticipate failures.
Our method outperforms the baselines across system-level and unit-test metrics, with 23% and 40% higher success rates in simulation and on physical hardware.
arXiv Detail & Related papers (2023-10-26T16:45:44Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - Addressing Mistake Severity in Neural Networks with Semantic Knowledge [0.0]
Most robust training techniques aim to improve model accuracy on perturbed inputs.
As an alternate form of robustness, we aim to reduce the severity of mistakes made by neural networks in challenging conditions.
We leverage current adversarial training methods to generate targeted adversarial attacks during the training process.
Results demonstrate that our approach performs better with respect to mistake severity compared to standard and adversarially trained models.
arXiv Detail & Related papers (2022-11-21T22:01:36Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off.
This work revisits the robustness-accuracy trade-off in robot learning by analyzing if recent advances in robust training methods and theory can make adversarial training suitable for real-world robot applications.
arXiv Detail & Related papers (2022-04-15T08:12:15Z) - Model Predictive Actor-Critic: Accelerating Robot Skill Acquisition with
Deep Reinforcement Learning [42.525696463089794]
Model Predictive Actor-Critic (MoPAC) is a hybrid model-based/model-free method that combines model predictive rollouts with policy optimization as to mitigate model bias.
MoPAC guarantees optimal skill learning up to an approximation error and reduces necessary physical interaction with the environment.
arXiv Detail & Related papers (2021-03-25T13:50:24Z) - Self-Progressing Robust Training [146.8337017922058]
Current robust training methods such as adversarial training explicitly uses an "attack" to generate adversarial examples.
We propose a new framework called SPROUT, self-progressing robust training.
Our results shed new light on scalable, effective and attack-independent robust training methods.
arXiv Detail & Related papers (2020-12-22T00:45:24Z) - Never Stop Learning: The Effectiveness of Fine-Tuning in Robotic
Reinforcement Learning [109.77163932886413]
We show how to adapt vision-based robotic manipulation policies to new variations by fine-tuning via off-policy reinforcement learning.
This adaptation uses less than 0.2% of the data necessary to learn the task from scratch.
We find that our approach of adapting pre-trained policies leads to substantial performance gains over the course of fine-tuning.
arXiv Detail & Related papers (2020-04-21T17:57:04Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
We introduce timing-based adversarial strategies against a DRL-based navigation system by jamming in physical noise patterns on the selected time frames.
Our experimental results show that the adversarial timing attacks can lead to a significant performance drop.
arXiv Detail & Related papers (2020-02-20T21:39:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.