論文の概要: Cross-Resolution Adversarial Dual Network for Person Re-Identification
and Beyond
- arxiv url: http://arxiv.org/abs/2002.09274v2
- Date: Thu, 22 Oct 2020 18:01:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-30 14:22:31.210577
- Title: Cross-Resolution Adversarial Dual Network for Person Re-Identification
and Beyond
- Title(参考訳): 人物再同定のためのクロスレゾリューション・adversarial dual network
- Authors: Yu-Jhe Li, Yun-Chun Chen, Yen-Yu Lin, Yu-Chiang Frank Wang
- Abstract要約: 人物再識別(re-ID)は、同一人物の画像をカメラビューでマッチングすることを目的としている。
カメラと関心のある人の距離が異なるため、解像度ミスマッチが期待できる。
本稿では,クロスレゾリューションな人物のリIDに対処する新たな生成的対向ネットワークを提案する。
- 参考スコア(独自算出の注目度): 59.149653740463435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Person re-identification (re-ID) aims at matching images of the same person
across camera views. Due to varying distances between cameras and persons of
interest, resolution mismatch can be expected, which would degrade re-ID
performance in real-world scenarios. To overcome this problem, we propose a
novel generative adversarial network to address cross-resolution person re-ID,
allowing query images with varying resolutions. By advancing adversarial
learning techniques, our proposed model learns resolution-invariant image
representations while being able to recover the missing details in
low-resolution input images. The resulting features can be jointly applied for
improving re-ID performance due to preserving resolution invariance and
recovering re-ID oriented discriminative details. Extensive experimental
results on five standard person re-ID benchmarks confirm the effectiveness of
our method and the superiority over the state-of-the-art approaches, especially
when the input resolutions are not seen during training. Furthermore, the
experimental results on two vehicle re-ID benchmarks also confirm the
generalization of our model on cross-resolution visual tasks. The extensions of
semi-supervised settings further support the use of our proposed approach to
real-world scenarios and applications.
- Abstract(参考訳): 人物再識別(re-ID)は、同一人物の画像をカメラビューでマッチングすることを目的としている。
カメラと関心のある人の距離が異なるため、解像度ミスマッチが期待でき、現実のシナリオではリID性能が低下する。
この問題を解決するために,クロスレゾリューションな人物のリIDに対処し,解像度の異なる画像のクエリを可能にする,新たな生成逆ネットワークを提案する。
対戦型学習手法を進歩させることで,低解像度入力画像の欠落した詳細を復元しながら,解像度不変の画像表現を学習する。
得られた特徴は、解像度不変性の保存とre-ID指向の識別詳細の回復によるre-ID性能の向上に共同で適用することができる。
5つの標準人物のre-IDベンチマークによる大規模な実験結果から,本手法の有効性と最先端アプローチよりも優れていることが確認された。
さらに,2台の車載リIDベンチマークによる実験結果から,クロスレゾリューション視覚タスクにおけるモデルの一般化を確認した。
半教師付き設定の拡張は、実世界のシナリオやアプリケーションに対する提案手法の使用をさらに支援します。
関連論文リスト
- ID-Aligner: Enhancing Identity-Preserving Text-to-Image Generation with Reward Feedback Learning [57.91881829308395]
AIポートレートや広告といった幅広いアプリケーションシナリオのために、ID-T2I(ID-preserving text-to-image generation)が注目されている。
我々は,ID-T2I性能を向上させるための一般的なフィードバック学習フレームワークである textbfID-Aligner を提案する。
論文 参考訳(メタデータ) (2024-04-23T18:41:56Z) - Cross-Modality Perturbation Synergy Attack for Person Re-identification [66.48494594909123]
相互モダリティReIDの主な課題は、異なるモダリティ間の視覚的差異を効果的に扱うことである。
既存の攻撃方法は、目に見える画像のモダリティの特徴に主に焦点を当てている。
本研究では,クロスモーダルReIDに特化して設計されたユニバーサル摂動攻撃を提案する。
論文 参考訳(メタデータ) (2024-01-18T15:56:23Z) - Modality Unifying Network for Visible-Infrared Person Re-Identification [24.186989535051623]
Visible-infrared person re-identification (VI-ReID) は、異種間の大きな相違とクラス内変異のために難しい課題である。
既存の手法は主に、異なるモダリティを同じ特徴空間に埋め込むことで、モダリティ共有表現を学習することに焦点を当てている。
そこで我々は,VI-ReID の頑健な補助モダリティを探索するために,新しいモダリティ統一ネットワーク (MUN) を提案する。
論文 参考訳(メタデータ) (2023-09-12T14:22:22Z) - ResFormer: Scaling ViTs with Multi-Resolution Training [100.01406895070693]
私たちはResFormerを紹介します。ResFormerは、広く、ほとんど目に見えない、テストの解像度でパフォーマンスを改善するフレームワークです。
特にResFormerは、異なる解像度の再現されたイメージを実行し、さまざまなスケールでインタラクティブな情報をエンゲージするスケール一貫性の損失を強制する。
さらに、ResFormerは柔軟性があり、セマンティックセグメンテーション、オブジェクト検出、ビデオアクション認識に容易に拡張できることを示す。
論文 参考訳(メタデータ) (2022-12-01T18:57:20Z) - Learning Resolution-Adaptive Representations for Cross-Resolution Person
Re-Identification [49.57112924976762]
低解像度(LR)クエリIDイメージと高解像度(HR)ギャラリーイメージとの整合性を実現する。
実際のカメラとの違いにより、クエリ画像が分解能の低下に悩まされることがしばしばあるため、これは困難かつ実用的な問題である。
本稿では,問合せ画像の解像度に適応する動的計量を用いて,HRとLRの画像を直接比較するためのSRフリーなパラダイムについて検討する。
論文 参考訳(メタデータ) (2022-07-09T03:49:51Z) - Resolution based Feature Distillation for Cross Resolution Person
Re-Identification [17.86505685442293]
人物の再識別(re-id)は、異なるカメラビューで同一人物の画像を取得することを目的としている。
解像度のミスマッチは、興味のある人とカメラの間の距離が異なるため起こる。
本稿では,複数の解像度の問題を克服するために,分解能に基づく特徴蒸留(RFD)アプローチを提案する。
論文 参考訳(メタデータ) (2021-09-16T11:07:59Z) - Low Resolution Information Also Matters: Learning Multi-Resolution
Representations for Person Re-Identification [37.01666917620271]
クロスレゾリューションされた人物のリIDは、オーバーラップされていないカメラから撮影した人物の画像をマッチングすることを目的としている。
emphtextbfMulti-Resolution textbfRepresentations textbfJoint textbfLearning (textbfMRJL)
提案手法は,分解能再構成ネットワーク(RRN)とDFFN(Dual Feature Fusion Network)から構成される。
論文 参考訳(メタデータ) (2021-05-26T16:54:56Z) - Deep High-Resolution Representation Learning for Cross-Resolution Person
Re-identification [22.104449922937338]
人物再識別(re-ID)は、異なるカメラから同一人物像と同一人物像をマッチングする問題に取り組む。
この問題を解決するために,PS-HRNet(Deep High-Resolution Pseudo-Siamese Framework)を提案する。
提案したPS-HRNetは,MLR-Market-1501,MLR-CUHK03,MLR-VIPeR,MLR-DukeMTMC-reID,CAVIARデータセット上でRan-1で3.4%,6.2%,2.5%,1.1%,4.2%の改善を行った。
論文 参考訳(メタデータ) (2021-05-25T07:45:38Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
クロスリゾリューション顔認識(CRFR)は、インテリジェントな監視およびバイオメトリックフォレンジックにおいて重要である。
既存の浅層学習と深層学習に基づく手法は、HR-LR対を共同特徴空間にマッピングすることに焦点を当てている。
本研究では,多レベル深層畳み込みニューラルネットワーク(CNN)の機能を完全に活用し,堅牢なCRFRを実現することを目的とする。
論文 参考訳(メタデータ) (2021-03-25T14:03:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。