論文の概要: An Advance on Variable Elimination with Applications to Tensor-Based
Computation
- arxiv url: http://arxiv.org/abs/2002.09320v1
- Date: Fri, 21 Feb 2020 14:17:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-30 00:35:29.302031
- Title: An Advance on Variable Elimination with Applications to Tensor-Based
Computation
- Title(参考訳): テンソル型計算への応用による可変除去の進歩
- Authors: Adnan Darwiche
- Abstract要約: 本稿では,確率的推論を含む多くのアルゴリズムの基盤となる可変除去の古典的アルゴリズムについて述べる。
結果は機能的依存関係の活用に関連しており、非常に大きなツリー幅を持つモデルで推論と学習を効率的に行うことができる。
- 参考スコア(独自算出の注目度): 11.358487655918676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present new results on the classical algorithm of variable elimination,
which underlies many algorithms including for probabilistic inference. The
results relate to exploiting functional dependencies, allowing one to perform
inference and learning efficiently on models that have very large treewidth.
The highlight of the advance is that it works with standard (dense) factors,
without the need for sparse factors or techniques based on knowledge
compilation that are commonly utilized. This is significant as it permits a
direct implementation of the improved variable elimination algorithm using
tensors and their operations, leading to extremely efficient implementations
especially when learning model parameters. Moreover, the proposed technique
does not require knowledge of the specific functional dependencies, only that
they exist, so can be used when learning these dependencies. We illustrate the
efficacy of our proposed algorithm by compiling Bayesian network queries into
tensor graphs and then learning their parameters from labeled data using a
standard tool for tensor computation.
- Abstract(参考訳): 本稿では、確率的推論を含む多くのアルゴリズムの基盤となる可変除去の古典的アルゴリズムに関する新しい結果を示す。
結果は関数依存の活用に関連しており、非常に大きな木幅を持つモデル上で推論や学習を効率的に行うことができる。
進歩のハイライトは、一般的に利用される知識のコンパイルに基づいて、スパースな要素やテクニックを必要とせずに、標準(センス)要因で機能することである。
これは、テンソルとその演算を用いた改良された変数除去アルゴリズムの直接実装を可能にするため、特にモデルパラメータの学習において非常に効率的な実装につながる。
さらに,提案手法では,特定の機能的依存関係の知識は必要とせず,それらの依存関係を学習する際に使用することができる。
本稿では,ベイジアンネットワーククエリをテンソルグラフにコンパイルし,テンソル計算の標準ツールを用いてラベル付きデータからパラメータを学習することにより,提案アルゴリズムの有効性を示す。
関連論文リスト
- Knowledge Composition using Task Vectors with Learned Anisotropic Scaling [51.4661186662329]
本稿では,パラメータブロックと異なる学習係数を線形に組み合わせ,タスクベクトルレベルでの異方性スケーリングを実現するアルゴリズムであるaTLASを紹介する。
このような線形結合は事前学習されたモデルの低内在性を明示的に利用しており、学習可能なパラメータは数係数のみであることを示す。
本稿では,タスク算術,少数ショット認識,テスト時間適応において,教師なしあるいは教師なしの目的を用いた手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-07-03T07:54:08Z) - Efficient and Generalizable Certified Unlearning: A Hessian-free Recollection Approach [8.875278412741695]
機械学習は、特定のデータを選択的に忘れることを可能にして、データ所有者の権利を忘れないように努力する。
我々は,ベクトル加算操作のみを必要とするため,ほぼ瞬時に未学習を実現するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-04-02T07:54:18Z) - Surprisal Driven $k$-NN for Robust and Interpretable Nonparametric
Learning [1.4293924404819704]
我々は情報理論の観点から、隣り合う従来のアルゴリズムに新たな光を当てた。
単一モデルを用いた分類,回帰,密度推定,異常検出などのタスクに対する頑健で解釈可能なフレームワークを提案する。
我々の研究は、分類と異常検出における最先端の成果を達成することによって、アーキテクチャの汎用性を示す。
論文 参考訳(メタデータ) (2023-11-17T00:35:38Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
ケルネル学習とBayesian Spike-and-Slab pres (KBASS)に基づく新しい方程式探索法を提案する。
カーネルレグレッションを用いてターゲット関数を推定する。これはフレキシブルで表現力があり、データ空間やノイズに対してより堅牢である。
我々は,効率的な後部推論と関数推定のための予測伝搬予測最大化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-09T03:55:09Z) - A Generic Performance Model for Deep Learning in a Distributed
Environment [0.7829352305480285]
本稿では,アプリケーション実行時間の汎用表現を用いた分散環境におけるアプリケーションの汎用性能モデルを提案する。
提案手法を3つのディープラーニングフレームワーク(MXnetとPytorch)で評価した。
論文 参考訳(メタデータ) (2023-05-19T13:30:34Z) - Equivariance with Learned Canonicalization Functions [77.32483958400282]
正規化を行うために小さなニューラルネットワークを学習することは、事前定義を使用することよりも優れていることを示す。
実験の結果,正準化関数の学習は多くのタスクで同変関数を学習する既存の手法と競合することがわかった。
論文 参考訳(メタデータ) (2022-11-11T21:58:15Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
ペアワイズ学習(Pairwise learning)とは、損失関数がペアインスタンスに依存するタスクをいう。
オンライン降下(OGD)は、ペアワイズ学習でストリーミングデータを処理する一般的なアプローチである。
本稿では,ペアワイズ学習のための手法について,シンプルでオンラインな下降を提案する。
論文 参考訳(メタデータ) (2021-11-23T18:10:48Z) - Neural Active Learning with Performance Guarantees [37.16062387461106]
非パラメトリックなレシエーションにおけるストリーミング環境におけるアクティブラーニングの問題について検討する。
我々は最近提案されたニューラル・タンジェント・カーネル(NTK)近似ツールを用いて、アルゴリズムが操作する特徴空間と学習したモデルを上から計算する適切なニューラル埋め込みを構築する。
論文 参考訳(メタデータ) (2021-06-06T20:44:23Z) - Learning Generalized Relational Heuristic Networks for Model-Agnostic
Planning [29.714818991696088]
本稿では,記号的行動モデルが存在しない場合の一般化を学習するための新しいアプローチを開発する。
データの効率的で一般化可能な学習を容易にするために、抽象状態表現を使用する。
論文 参考訳(メタデータ) (2020-07-10T06:08:28Z) - AdaS: Adaptive Scheduling of Stochastic Gradients [50.80697760166045]
我々は、textit "knowledge gain" と textit "mapping condition" の概念を導入し、Adaptive Scheduling (AdaS) と呼ばれる新しいアルゴリズムを提案する。
実験によると、AdaSは派生した指標を用いて、既存の適応学習手法よりも高速な収束と優れた一般化、そして(b)いつトレーニングを中止するかを決定するための検証セットへの依存の欠如を示す。
論文 参考訳(メタデータ) (2020-06-11T16:36:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。