TFApprox: Towards a Fast Emulation of DNN Approximate Hardware
Accelerators on GPU
- URL: http://arxiv.org/abs/2002.09481v1
- Date: Fri, 21 Feb 2020 08:22:56 GMT
- Title: TFApprox: Towards a Fast Emulation of DNN Approximate Hardware
Accelerators on GPU
- Authors: Filip Vaverka, Vojtech Mrazek, Zdenek Vasicek, Lukas Sekanina
- Abstract summary: Energy efficiency of hardware accelerators of deep neural networks (DNN) can be improved by introducing approximate arithmetic circuits.
A software emulation of the DNN accelerator is usually executed on CPU or GPU.
This emulation is typically two or three orders of magnitude slower than a software DNN implementation running on or emulated.
- Score: 0.4817429789586127
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Energy efficiency of hardware accelerators of deep neural networks (DNN) can
be improved by introducing approximate arithmetic circuits. In order to
quantify the error introduced by using these circuits and avoid the expensive
hardware prototyping, a software emulator of the DNN accelerator is usually
executed on CPU or GPU. However, this emulation is typically two or three
orders of magnitude slower than a software DNN implementation running on CPU or
GPU and operating with standard floating point arithmetic instructions and
common DNN libraries. The reason is that there is no hardware support for
approximate arithmetic operations on common CPUs and GPUs and these operations
have to be expensively emulated. In order to address this issue, we propose an
efficient emulation method for approximate circuits utilized in a given DNN
accelerator which is emulated on GPU. All relevant approximate circuits are
implemented as look-up tables and accessed through a texture memory mechanism
of CUDA capable GPUs. We exploit the fact that the texture memory is optimized
for irregular read-only access and in some GPU architectures is even
implemented as a dedicated cache. This technique allowed us to reduce the
inference time of the emulated DNN accelerator approximately 200 times with
respect to an optimized CPU version on complex DNNs such as ResNet. The
proposed approach extends the TensorFlow library and is available online at
https://github.com/ehw-fit/tf-approximate.
Related papers
- Deep Optimizer States: Towards Scalable Training of Transformer Models Using Interleaved Offloading [2.8231000588510757]
Transformers and large language models(LLMs) have seen rapid adoption in all domains.
Training of transformers is very expensive and often hits a memory wall''
We propose a novel technique to split the LLM into subgroups, whose update phase is scheduled on either the CPU or the GPU.
arXiv Detail & Related papers (2024-10-26T00:43:59Z) - Weight Block Sparsity: Training, Compilation, and AI Engine Accelerators [0.0]
Deep Neural Networks (DNNs) are being developed, trained, and utilized, putting a strain on both advanced and limited devices.
Our solution is to implement em weight block sparsity, which is a structured sparsity that is friendly to hardware.
We will present performance estimates using accurate and complete code generation for AIE2 configuration sets (AMD Versal FPGAs) with Resnet50, Inception V3, and VGG16.
arXiv Detail & Related papers (2024-07-12T17:37:49Z) - INR-Arch: A Dataflow Architecture and Compiler for Arbitrary-Order
Gradient Computations in Implicit Neural Representation Processing [66.00729477511219]
Given a function represented as a computation graph, traditional architectures face challenges in efficiently computing its nth-order gradient.
We introduce INR-Arch, a framework that transforms the computation graph of an nth-order gradient into a hardware-optimized dataflow architecture.
We present results that demonstrate 1.8-4.8x and 1.5-3.6x speedup compared to CPU and GPU baselines respectively.
arXiv Detail & Related papers (2023-08-11T04:24:39Z) - PowerFusion: A Tensor Compiler with Explicit Data Movement Description
and Instruction-level Graph IR [10.059491353103526]
We propose IntelliGen, a tensor compiler that can generate high-performance code for memory-intensive operators.
IntelliGen considers both computation and data movement optimizations.
We evaluate IntelliGen on NVIDIA GPU, AMD GPU, and Cambricon MLU, showing speedup up to 1.97x, 2.93x, and 16.91x (1.28x, 1.23x, and 2.31x on average)
arXiv Detail & Related papers (2023-07-11T03:17:40Z) - AxoNN: An asynchronous, message-driven parallel framework for
extreme-scale deep learning [1.5301777464637454]
AxoNN is a parallel deep learning framework that exploits asynchrony and message-driven execution to schedule neural network operations on each GPU.
By using the CPU memory as a scratch space for offloading data periodically during training, AxoNN is able to reduce GPU memory consumption by four times.
arXiv Detail & Related papers (2021-10-25T14:43:36Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
We propose a novel encoding scheme using -1, +1 to decompose quantized neural networks (QNNs) into multi-branch binary networks.
We validate the effectiveness of our method on large-scale image classification, object detection, and semantic segmentation tasks.
arXiv Detail & Related papers (2021-06-18T03:11:15Z) - VersaGNN: a Versatile accelerator for Graph neural networks [81.1667080640009]
We propose textitVersaGNN, an ultra-efficient, systolic-array-based versatile hardware accelerator.
textitVersaGNN achieves on average 3712$times$ speedup with 1301.25$times$ energy reduction on CPU, and 35.4$times$ speedup with 17.66$times$ energy reduction on GPU.
arXiv Detail & Related papers (2021-05-04T04:10:48Z) - Efficient and Generic 1D Dilated Convolution Layer for Deep Learning [52.899995651639436]
We introduce our efficient implementation of a generic 1D convolution layer covering a wide range of parameters.
It is optimized for x86 CPU architectures, in particular, for architectures containing Intel AVX-512 and AVX-512 BFloat16 instructions.
We demonstrate the performance of our optimized 1D convolution layer by utilizing it in the end-to-end neural network training with real genomics datasets.
arXiv Detail & Related papers (2021-04-16T09:54:30Z) - DistGNN: Scalable Distributed Training for Large-Scale Graph Neural
Networks [58.48833325238537]
Full-batch training on Graph Neural Networks (GNN) to learn the structure of large graphs is a critical problem that needs to scale to hundreds of compute nodes to be feasible.
In this paper, we presentGNN that optimize the well-known Deep Graph Library (DGL) for full-batch training on CPU clusters.
Our results on four common GNN benchmark datasets show up to 3.7x speed-up using a single CPU socket and up to 97x speed-up using 128 CPU sockets.
arXiv Detail & Related papers (2021-04-14T08:46:35Z) - At-Scale Sparse Deep Neural Network Inference with Efficient GPU
Implementation [24.824295164938604]
This paper presents GPU performance optimization and scaling results for inference models of the Sparse Deep Neural Network Challenge 2020.
Sparse deep neural networks (SpDNN) have shown promise for reining in the memory footprint of large neural networks.
This work presents optimized sparse matrix multiplication kernels fused with the ReLU function.
arXiv Detail & Related papers (2020-07-28T12:09:43Z) - PolyDL: Polyhedral Optimizations for Creation of High Performance DL
primitives [55.79741270235602]
We present compiler algorithms to automatically generate high performance implementations of Deep Learning primitives.
We develop novel data reuse analysis algorithms using the polyhedral model.
We also show that such a hybrid compiler plus a minimal library-use approach results in state-of-the-art performance.
arXiv Detail & Related papers (2020-06-02T06:44:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.