AxoNN: An asynchronous, message-driven parallel framework for
extreme-scale deep learning
- URL: http://arxiv.org/abs/2110.13005v5
- Date: Sun, 14 May 2023 04:38:38 GMT
- Title: AxoNN: An asynchronous, message-driven parallel framework for
extreme-scale deep learning
- Authors: Siddharth Singh, Abhinav Bhatele
- Abstract summary: AxoNN is a parallel deep learning framework that exploits asynchrony and message-driven execution to schedule neural network operations on each GPU.
By using the CPU memory as a scratch space for offloading data periodically during training, AxoNN is able to reduce GPU memory consumption by four times.
- Score: 1.5301777464637454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the last few years, the memory requirements to train state-of-the-art
neural networks have far exceeded the DRAM capacities of modern hardware
accelerators. This has necessitated the development of efficient algorithms to
train these neural networks in parallel on large-scale GPU-based clusters.
Since computation is relatively inexpensive on modern GPUs, designing and
implementing extremely efficient communication in these parallel training
algorithms is critical for extracting the maximum performance. This paper
presents AxoNN, a parallel deep learning framework that exploits asynchrony and
message-driven execution to schedule neural network operations on each GPU,
thereby reducing GPU idle time and maximizing hardware efficiency. By using the
CPU memory as a scratch space for offloading data periodically during training,
AxoNN is able to reduce GPU memory consumption by four times. This allows us to
increase the number of parameters per GPU by four times, thus reducing the
amount of communication and increasing performance by over 13%. When tested
against large transformer models with 12-100 billion parameters on 48-384
NVIDIA Tesla V100 GPUs, AxoNN achieves a per-GPU throughput of 49.4-54.78% of
theoretical peak and reduces the training time by 22-37 days (15-25% speedup)
as compared to the state-of-the-art.
Related papers
- FLUX: Fast Software-based Communication Overlap On GPUs Through Kernel Fusion [9.5114389643299]
This paper proposes a novel method, Flux, to significantly hide communication latencies with dependent computations for GPUs.
Flux can potentially overlap up to 96% of communication given a fused kernel.
Overall, it can achieve up to 1.24x speedups for training over Megatron-LM on a cluster of 128 GPU with various GPU generations and interconnects.
arXiv Detail & Related papers (2024-06-11T00:17:39Z) - DistTGL: Distributed Memory-Based Temporal Graph Neural Network Training [18.52206409432894]
DistTGL is an efficient and scalable solution to train memory-based TGNNs on distributed GPU clusters.
In experiments, DistTGL achieves near-linear convergence speedup, outperforming state-of-the-art single-machine method by 14.5% in accuracy and 10.17x in training throughput.
arXiv Detail & Related papers (2023-07-14T22:52:27Z) - Instant Neural Graphics Primitives with a Multiresolution Hash Encoding [67.33850633281803]
We present a versatile new input encoding that permits the use of a smaller network without sacrificing quality.
A small neural network is augmented by a multiresolution hash table of trainable feature vectors whose values are optimized through a gradient descent.
We achieve a combined speed of several orders of magnitude, enabling training of high-quality neural graphics primitives in a matter of seconds.
arXiv Detail & Related papers (2022-01-16T07:22:47Z) - Accelerating Training and Inference of Graph Neural Networks with Fast
Sampling and Pipelining [58.10436813430554]
Mini-batch training of graph neural networks (GNNs) requires a lot of computation and data movement.
We argue in favor of performing mini-batch training with neighborhood sampling in a distributed multi-GPU environment.
We present a sequence of improvements to mitigate these bottlenecks, including a performance-engineered neighborhood sampler.
We also conduct an empirical analysis that supports the use of sampling for inference, showing that test accuracies are not materially compromised.
arXiv Detail & Related papers (2021-10-16T02:41:35Z) - Scheduling Optimization Techniques for Neural Network Training [3.1617796705744547]
This paper proposes out-of-order (ooo) backprop, an effective scheduling technique for neural network training.
We show that the GPU utilization in single-GPU, data-parallel, and pipeline-parallel training can be commonly improve by applying ooo backprop.
arXiv Detail & Related papers (2021-10-03T05:45:06Z) - VersaGNN: a Versatile accelerator for Graph neural networks [81.1667080640009]
We propose textitVersaGNN, an ultra-efficient, systolic-array-based versatile hardware accelerator.
textitVersaGNN achieves on average 3712$times$ speedup with 1301.25$times$ energy reduction on CPU, and 35.4$times$ speedup with 17.66$times$ energy reduction on GPU.
arXiv Detail & Related papers (2021-05-04T04:10:48Z) - Efficient and Generic 1D Dilated Convolution Layer for Deep Learning [52.899995651639436]
We introduce our efficient implementation of a generic 1D convolution layer covering a wide range of parameters.
It is optimized for x86 CPU architectures, in particular, for architectures containing Intel AVX-512 and AVX-512 BFloat16 instructions.
We demonstrate the performance of our optimized 1D convolution layer by utilizing it in the end-to-end neural network training with real genomics datasets.
arXiv Detail & Related papers (2021-04-16T09:54:30Z) - DistGNN: Scalable Distributed Training for Large-Scale Graph Neural
Networks [58.48833325238537]
Full-batch training on Graph Neural Networks (GNN) to learn the structure of large graphs is a critical problem that needs to scale to hundreds of compute nodes to be feasible.
In this paper, we presentGNN that optimize the well-known Deep Graph Library (DGL) for full-batch training on CPU clusters.
Our results on four common GNN benchmark datasets show up to 3.7x speed-up using a single CPU socket and up to 97x speed-up using 128 CPU sockets.
arXiv Detail & Related papers (2021-04-14T08:46:35Z) - At-Scale Sparse Deep Neural Network Inference with Efficient GPU
Implementation [24.824295164938604]
This paper presents GPU performance optimization and scaling results for inference models of the Sparse Deep Neural Network Challenge 2020.
Sparse deep neural networks (SpDNN) have shown promise for reining in the memory footprint of large neural networks.
This work presents optimized sparse matrix multiplication kernels fused with the ReLU function.
arXiv Detail & Related papers (2020-07-28T12:09:43Z) - Optimizing Memory Placement using Evolutionary Graph Reinforcement
Learning [56.83172249278467]
We introduce Evolutionary Graph Reinforcement Learning (EGRL), a method designed for large search spaces.
We train and validate our approach directly on the Intel NNP-I chip for inference.
We additionally achieve 28-78% speed-up compared to the native NNP-I compiler on all three workloads.
arXiv Detail & Related papers (2020-07-14T18:50:12Z) - TFApprox: Towards a Fast Emulation of DNN Approximate Hardware
Accelerators on GPU [0.4817429789586127]
Energy efficiency of hardware accelerators of deep neural networks (DNN) can be improved by introducing approximate arithmetic circuits.
A software emulation of the DNN accelerator is usually executed on CPU or GPU.
This emulation is typically two or three orders of magnitude slower than a software DNN implementation running on or emulated.
arXiv Detail & Related papers (2020-02-21T08:22:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.