Efficient unitary designs with a system-size independent number of
non-Clifford gates
- URL: http://arxiv.org/abs/2002.09524v3
- Date: Sun, 11 Jun 2023 20:42:07 GMT
- Title: Efficient unitary designs with a system-size independent number of
non-Clifford gates
- Authors: Jonas Haferkamp, Felipe Montealegre-Mora, Markus Heinrich, Jens
Eisert, David Gross, Ingo Roth
- Abstract summary: It takes exponential resources to produce Haar-random unitaries drawn from the full $n$-qubit group.
Unitary $t-designs mimic the Haar-$-th moments.
We derive novel bounds on the convergence time of random Clifford circuits to the $t$-th moment of the uniform distribution on the Clifford group.
- Score: 2.387952453171487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many quantum information protocols require the implementation of random
unitaries. Because it takes exponential resources to produce Haar-random
unitaries drawn from the full $n$-qubit group, one often resorts to
$t$-designs. Unitary $t$-designs mimic the Haar-measure up to $t$-th moments.
It is known that Clifford operations can implement at most $3$-designs. In this
work, we quantify the non-Clifford resources required to break this barrier. We
find that it suffices to inject $O(t^{4}\log^{2}(t)\log(1/\varepsilon))$ many
non-Clifford gates into a polynomial-depth random Clifford circuit to obtain an
$\varepsilon$-approximate $t$-design. Strikingly, the number of non-Clifford
gates required is independent of the system size -- asymptotically, the density
of non-Clifford gates is allowed to tend to zero. We also derive novel bounds
on the convergence time of random Clifford circuits to the $t$-th moment of the
uniform distribution on the Clifford group. Our proofs exploit a recently
developed variant of Schur-Weyl duality for the Clifford group, as well as
bounds on restricted spectral gaps of averaging operators.
Related papers
- Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - Characterising semi-Clifford gates using algebraic sets [0.0]
We study the sets of gates of the third-level of the Clifford hierarchy and their distinguished subsets of nearly diagonal' semi-Clifford gates.
Semi-Clifford gates are important because they can be implemented with far more efficient use of these resource states.
arXiv Detail & Related papers (2023-09-26T18:41:57Z) - Simulation of IBM's kicked Ising experiment with Projected Entangled
Pair Operator [71.10376783074766]
We perform classical simulations of the 127-qubit kicked Ising model, which was recently emulated using a quantum circuit with error mitigation.
Our approach is based on the projected entangled pair operator (PEPO) in the Heisenberg picture.
We develop a Clifford expansion theory to compute exact expectation values and use them to evaluate algorithms.
arXiv Detail & Related papers (2023-08-06T10:24:23Z) - A Law of Robustness beyond Isoperimetry [84.33752026418045]
We prove a Lipschitzness lower bound $Omega(sqrtn/p)$ of robustness of interpolating neural network parameters on arbitrary distributions.
We then show the potential benefit of overparametrization for smooth data when $n=mathrmpoly(d)$.
We disprove the potential existence of an $O(1)$-Lipschitz robust interpolating function when $n=exp(omega(d))$.
arXiv Detail & Related papers (2022-02-23T16:10:23Z) - Random quantum circuits transform local noise into global white noise [118.18170052022323]
We study the distribution over measurement outcomes of noisy random quantum circuits in the low-fidelity regime.
For local noise that is sufficiently weak and unital, correlations (measured by the linear cross-entropy benchmark) between the output distribution $p_textnoisy$ of a generic noisy circuit instance shrink exponentially.
If the noise is incoherent, the output distribution approaches the uniform distribution $p_textunif$ at precisely the same rate.
arXiv Detail & Related papers (2021-11-29T19:26:28Z) - Approximate 3-designs and partial decomposition of the Clifford group
representation using transvections [14.823143667165382]
Scheme implements a random Pauli once followed by the implementation of a random transvection Clifford by using state twirling.
We show that when this scheme is implemented $k$ times, then, in the $k rightarrow infty$ limit, the overall scheme implements a unitary $3$-design.
arXiv Detail & Related papers (2021-11-26T18:59:42Z) - Statistical Mechanics Model for Clifford Random Tensor Networks and
Monitored Quantum Circuits [0.0]
We introduce an exact mapping of Clifford (stabilizer) random tensor networks (RTNs) and monitored quantum circuits, onto a statistical mechanics model.
We show that the Boltzmann weights are invariant under a symmetry group involving matrices with entries in the finite number field $bf F_p$.
We show that Clifford monitored circuits with on-site Hilbert space dimension $d=pM$ are described by percolation in the limits $d to infty$ at (a) $p=$ fixed but $Mto infty$,
arXiv Detail & Related papers (2021-10-06T18:02:33Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z) - 6-qubit Optimal Clifford Circuits [8.024778381207128]
Clifford group elements can be used to perform magic state distillation and form randomized benchmarking protocols.
Finding short circuits is a hard problem; despite Clifford group being finite, its size grows quickly with the number of qubits.
We show how to extract arbitrary optimal 6-qubit Clifford circuit in $0.0009358$ and $0.0006274$ seconds using consumer- and enterprise-grade computers.
arXiv Detail & Related papers (2020-12-11T01:33:17Z) - Random quantum circuits anti-concentrate in log depth [118.18170052022323]
We study the number of gates needed for the distribution over measurement outcomes for typical circuit instances to be anti-concentrated.
Our definition of anti-concentration is that the expected collision probability is only a constant factor larger than if the distribution were uniform.
In both the case where the gates are nearest-neighbor on a 1D ring and the case where gates are long-range, we show $O(n log(n)) gates are also sufficient.
arXiv Detail & Related papers (2020-11-24T18:44:57Z) - Hadamard-free circuits expose the structure of the Clifford group [9.480212602202517]
The Clifford group plays a central role in quantum randomized benchmarking, quantum tomography, and error correction protocols.
We show that any Clifford operator can be uniquely written in the canonical form $F_HSF$.
A surprising connection is highlighted between random uniform Clifford operators and the Mallows distribution on the symmetric group.
arXiv Detail & Related papers (2020-03-20T17:51:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.