Anticoncentration in Clifford Circuits and Beyond: From Random Tensor Networks to Pseudo-Magic States
- URL: http://arxiv.org/abs/2502.20455v1
- Date: Thu, 27 Feb 2025 19:00:29 GMT
- Title: Anticoncentration in Clifford Circuits and Beyond: From Random Tensor Networks to Pseudo-Magic States
- Authors: Beatrice Magni, Alexios Christopoulos, Andrea De Luca, Xhek Turkeshi,
- Abstract summary: Anticoncentration describes how an ensemble of quantum states spreads over the allowed Hilbert space.<n>We investigate the anticoncentration of random Clifford circuits toward the overlap distribution of random stabilizer states.<n>We show that inserting a polylogarithmic in qudit number of $T$-states is sufficient to drive the overlap distribution toward the Porter-Thomas statistics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anticoncentration describes how an ensemble of quantum states spreads over the allowed Hilbert space, leading to statistically uniform output probability distributions. In this work, we investigate the anticoncentration of random Clifford circuits toward the overlap distribution of random stabilizer states. Using exact analytical techniques and extensive numerical simulations based on Clifford replica tensor networks, we demonstrate that random Clifford circuits fully anticoncentrate in logarithmic circuit depth, namely higher-order moments of the overlap distribution converge to those of random stabilizer states. Moreover, we investigate the effect of introducing a controlled number of non-Clifford (magic) resources into Clifford circuits. We show that inserting a polylogarithmic in qudit number of $T$-states is sufficient to drive the overlap distribution toward the Porter-Thomas statistics, effectively recovering full quantum randomness. In short, this fact presents doped tensor networks and shallow Clifford circuits as pseudo-magic quantum states. Our results clarify the interplay between Clifford dynamics, magic resource injection, and quantum complexity, with implications for quantum circuit sampling and benchmarking of computational quantum advantage.
Related papers
- Clifford and Non-Clifford Splitting in Quantum Circuits: Applications and ZX-Calculus Detection Procedure [49.1574468325115]
We propose and analyze use cases that come from quantum circuits that can be written as product between a Clifford and a Non-Clifford unitary.
We make use of ZX-Calculus and its assets to detect a limiting border of these circuits that would allow for a separation between a Clifford section and a Non-Clifford section.
arXiv Detail & Related papers (2025-04-22T16:10:34Z) - Clifford-Dressed Variational Principles for Precise Loschmidt Echoes [44.99833362998488]
We extend the recently introduced Clifford dressed Time-Dependent Variational Principle (TDVP) to efficiently compute many-body wavefunction amplitudes in the computational basis.<n>By incorporating Clifford disentangling gates during TDVP evolution, our method effectively controls entanglement growth while keeping the computation of these amplitudes accessible.
arXiv Detail & Related papers (2025-02-03T22:43:32Z) - Disentangling critical quantum spin chains with Clifford circuits [39.58317527488534]
We explore the power of the CAMPS method in critical spin chains described by conformal field theories (CFTs) in the scaling limit.
We find that the optimized disentanglers correspond to it duality transformations, which significantly reduce the entanglement entropy in the ground state.
Our results highlight the potential of the framework as a versatile tool for uncovering hidden dualities and simplifying the entanglement structure of critical quantum systems.
arXiv Detail & Related papers (2024-11-19T17:39:54Z) - The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Quantum advantage from measurement-induced entanglement in random shallow circuits [0.18749305679160366]
We show that long-range measurement-induced entanglement (MIE) proliferates when the circuit depth is at least a constant critical value.
We introduce a two-dimensional, depth-2, "coarse-grained" circuit architecture, composed of random Clifford gates acting on O(log n) qubits.
arXiv Detail & Related papers (2024-07-30T21:39:23Z) - Stabilizer Tensor Networks: universal quantum simulator on a basis of stabilizer states [0.0]
We present a generalization of the tableau formalism used for Clifford circuit simulation.
We explicitly prove how to update our formalism with Clifford gates, non-Clifford gates, and measurements.
arXiv Detail & Related papers (2024-03-13T17:23:09Z) - Simulating quantum circuit expectation values by Clifford perturbation
theory [0.0]
We consider the expectation value problem for circuits composed of Clifford gates and non-Clifford Pauli rotations.
We introduce a perturbative approach based on the truncation of the exponentially growing sum of Pauli terms in the Heisenberg picture.
Results indicate that this systematically improvable perturbative method offers a viable alternative to exact methods for approxing expectation values of large near-Clifford circuits.
arXiv Detail & Related papers (2023-06-07T21:42:10Z) - Partitioning Quantum Chemistry Simulations with Clifford Circuits [1.0286890995028481]
Current quantum computing hardware is restricted by the availability of only few, noisy qubits.
We investigate the limits of their classical and near-classical treatment while staying within the framework of quantum circuits.
arXiv Detail & Related papers (2023-03-02T13:05:19Z) - Iterative Qubit Coupled Cluster using only Clifford circuits [36.136619420474766]
An ideal state preparation protocol can be characterized by being easily generated classically.
We propose a method that meets these requirements by introducing a variant of the iterative qubit coupled cluster (iQCC)
We demonstrate the algorithm's correctness in ground-state simulations and extend our study to complex systems like the titanium-based compound Ti(C5H5)(CH3)3 with a (20, 20) active space.
arXiv Detail & Related papers (2022-11-18T20:31:10Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
This work provides an extensive characterization of the learnability of the output distributions of local quantum circuits.
We show that for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=omega(log(n))$ Clifford circuits is hard.
arXiv Detail & Related papers (2022-07-07T08:04:15Z) - Learnability of the output distributions of local quantum circuits [53.17490581210575]
We investigate, within two different oracle models, the learnability of quantum circuit Born machines.
We first show a negative result, that the output distributions of super-logarithmic depth Clifford circuits are not sample-efficiently learnable.
We show that in a more powerful oracle model, namely when directly given access to samples, the output distributions of local Clifford circuits are computationally efficiently PAC learnable.
arXiv Detail & Related papers (2021-10-11T18:00:20Z) - Simulating quench dynamics on a digital quantum computer with
data-driven error mitigation [62.997667081978825]
We present one of the first implementations of several Clifford data regression based methods which are used to mitigate the effect of noise in real quantum data.
We find in general Clifford data regression based techniques are advantageous in comparison with zero-noise extrapolation.
This is the largest systems investigated so far in a study of this type.
arXiv Detail & Related papers (2021-03-23T16:56:14Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.