Deterministic correction of qubit loss
- URL: http://arxiv.org/abs/2002.09532v1
- Date: Fri, 21 Feb 2020 19:48:53 GMT
- Title: Deterministic correction of qubit loss
- Authors: Roman Stricker, Davide Vodola, Alexander Erhard, Lukas Postler,
Michael Meth, Martin Ringbauer, Philipp Schindler, Thomas Monz, Markus
M\"uller and Rainer Blatt
- Abstract summary: Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
- Score: 48.43720700248091
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The loss of qubits - the elementary carriers of quantum information - poses
one of the fundamental obstacles towards large-scale and fault-tolerant quantum
information processors. In this work, we experimentally demonstrate a complete
toolbox and the implementation of a full cycle of qubit loss detection and
correction on a minimal instance of a topological surface code. This includes a
quantum non-demolition measurement of a qubit loss event that conditionally
triggers a restoration procedure, mapping the logical qubit onto a new encoding
on the remaining qubits. The demonstrated methods, implemented here in a
trapped-ion quantum processor, are applicable to other quantum computing
architectures and codes, including leading 2D and 3D topological quantum error
correcting codes. These tools complement previously demonstrated techniques to
correct computational errors, and in combination constitute essential building
blocks for complete and scalable quantum error correction.
Related papers
- Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Compilation of a simple chemistry application to quantum error correction primitives [44.99833362998488]
We estimate the resources required to fault-tolerantly perform quantum phase estimation on a minimal chemical example.
We find that implementing even a simple chemistry circuit requires 1,000 qubits and 2,300 quantum error correction rounds.
arXiv Detail & Related papers (2023-07-06T18:00:10Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Syndrome-Derived Error Rates as a Benchmark of Quantum Hardware [0.0]
Quantum error correcting codes are designed to pinpoint exactly when and where errors occur in quantum circuits.
By analyzing the outputs of even small-scale quantum error correction circuits, a detailed picture can be constructed of error processes across a quantum device.
arXiv Detail & Related papers (2022-07-01T17:10:51Z) - Quantum error correction with silicon spin qubits [0.0]
Large-scale quantum computers rely on quantum error correction to protect the fragile quantum information.
Recent advances in silicon-based qubits have enabled the implementations of high quality one and two qubit systems.
Here, we demonstrate a three-qubit phase correcting code in silicon, where an encoded three-qubit state is protected against any phase-flip error on one of the three qubits.
arXiv Detail & Related papers (2022-01-21T07:59:49Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
We demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors.
In an error correction cycle taking only $1.1,mu$s, we demonstrate the preservation of four cardinal states of the logical qubit.
arXiv Detail & Related papers (2021-12-07T13:58:44Z) - Fault-tolerant operation of a logical qubit in a diamond quantum
processor [0.21670084965090575]
We demonstrate fault-tolerant operations on a logical qubit using spin qubits in diamond.
Our realization of fault-tolerant protocols on the logical-qubit level is a key step towards large-scale quantum information processing.
arXiv Detail & Related papers (2021-08-03T17:39:25Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.