Syndrome-Derived Error Rates as a Benchmark of Quantum Hardware
- URL: http://arxiv.org/abs/2207.00553v1
- Date: Fri, 1 Jul 2022 17:10:51 GMT
- Title: Syndrome-Derived Error Rates as a Benchmark of Quantum Hardware
- Authors: James R. Wootton
- Abstract summary: Quantum error correcting codes are designed to pinpoint exactly when and where errors occur in quantum circuits.
By analyzing the outputs of even small-scale quantum error correction circuits, a detailed picture can be constructed of error processes across a quantum device.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error correcting codes are designed to pinpoint exactly when and
where errors occur in quantum circuits. This feature is the foundation of their
primary task: to support fault-tolerant quantum computation. However, this
feature could used as the basis of benchmarking: By analyzing the outputs of
even small-scale quantum error correction circuits, a detailed picture can be
constructed of error processes across a quantum device. Here we perform an
example of such an analysis, using the results of small repetition codes to
determine the error rate of each qubit while idle during a syndrome
measurement. This provides an idea of the errors experienced by the qubits
across a device while they are part of the kind of circuit that we expect to be
typical in fault-tolerant quantum computers.
Related papers
- Weakly Fault-Tolerant Computation in a Quantum Error-Detecting Code [0.0]
Many current quantum error correcting codes that achieve full fault-tolerance suffer from having low ratios of logical to physical qubits and significant overhead.
We propose a middle ground: constructions in the [[n,n-2,2]] quantum error detecting code that can detect any error from a single faulty gate.
arXiv Detail & Related papers (2024-08-27T07:25:36Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Automatic Implementation and Evaluation of Error-Correcting Codes for
Quantum Computing: An Open-Source Framework for Quantum Error Correction [2.1801327670218855]
Real quantum computers are plagued by frequent noise effects that cause errors during computations.
Quantum error-correcting codes address this problem by providing means to identify and correct corresponding errors.
We propose an open-source framework that automatically applies error-correcting codes for a given application followed by an automatic noise-aware quantum circuit simulation.
arXiv Detail & Related papers (2023-01-13T19:12:22Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
We demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors.
In an error correction cycle taking only $1.1,mu$s, we demonstrate the preservation of four cardinal states of the logical qubit.
arXiv Detail & Related papers (2021-12-07T13:58:44Z) - Mitigating Quantum Errors via Truncated Neumann Series [10.04862322536857]
We propose a unified framework that can mitigate quantum gate and measurement errors in computing quantum expectation values.
The essential idea is to cancel the effect of quantum error by approximating its inverse via linearly combining quantum errors of different orders.
We test this framework for different quantum errors and find that the computation accuracy is substantially improved.
arXiv Detail & Related papers (2021-11-01T04:16:49Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Certified quantum gates [0.0]
We present a strategy for developing quantum error detection for certain gate imperfections.
Error detection can be used to certify individual gate operations against certain errors.
arXiv Detail & Related papers (2020-08-17T17:36:51Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.