論文の概要: Training Question Answering Models From Synthetic Data
- arxiv url: http://arxiv.org/abs/2002.09599v1
- Date: Sat, 22 Feb 2020 01:49:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-29 18:43:59.239729
- Title: Training Question Answering Models From Synthetic Data
- Title(参考訳): 合成データを用いた質問応答モデルの学習
- Authors: Raul Puri, Ryan Spring, Mostofa Patwary, Mohammad Shoeybi, Bryan
Catanzaro
- Abstract要約: 本研究は, 人工問合せと人為的問合せのギャップを狭めることを目的としている。
我々は830億のパラメータ GPT-2 モデルにより生成された合成コーパスから質問や回答を合成する。
人間の監督にアクセスできず、他のモデルのみにアクセスできないため、完全にモデル生成データに基づいて、アート質問応答ネットワークの状態をトレーニングすることが可能です。
- 参考スコア(独自算出の注目度): 26.91650323300262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Question and answer generation is a data augmentation method that aims to
improve question answering (QA) models given the limited amount of human
labeled data. However, a considerable gap remains between synthetic and
human-generated question-answer pairs. This work aims to narrow this gap by
taking advantage of large language models and explores several factors such as
model size, quality of pretrained models, scale of data synthesized, and
algorithmic choices. On the SQuAD1.1 question answering task, we achieve higher
accuracy using solely synthetic questions and answers than when using the
SQuAD1.1 training set questions alone. Removing access to real Wikipedia data,
we synthesize questions and answers from a synthetic corpus generated by an 8.3
billion parameter GPT-2 model. With no access to human supervision and only
access to other models, we are able to train state of the art question
answering networks on entirely model-generated data that achieve 88.4 Exact
Match (EM) and 93.9 F1 score on the SQuAD1.1 dev set. We further apply our
methodology to SQuAD2.0 and show a 2.8 absolute gain on EM score compared to
prior work using synthetic data.
- Abstract(参考訳): 質問と回答の生成は、人間のラベル付きデータの限られた量から質問応答(QA)モデルを改善することを目的としたデータ拡張手法である。
しかし、合成物と人工物との間には大きなギャップが残っている。
この研究は、大きな言語モデルを活用することで、このギャップを狭めることを目的としており、モデルのサイズ、事前訓練されたモデルの品質、データ合成の規模、アルゴリズムの選択など、いくつかの要因を探求している。
SQuAD1.1の質問応答タスクでは、SQuAD1.1のトレーニングセットを単独で使用する場合よりも、単に合成された質問や回答の方が精度が高い。
実際のウィキペディアデータへのアクセスを取り除き、830億のパラメータ GPT-2 モデルで生成された合成コーパスから質問と回答を合成する。
人間の監督にアクセスできず、他のモデルへのアクセスしかできないため、squad1.1開発セットで88.4の正確な一致(em)と93.9のf1スコアを達成する、完全に生成されたデータに基づいて、アート質問応答ネットワークの状態をトレーニングすることができる。
さらに,本手法をSQuAD2.0に適用し,合成データを用いた先行研究と比較して,EMスコアの2.8絶対ゲインを示す。
関連論文リスト
- Chatting Up Attachment: Using LLMs to Predict Adult Bonds [0.0]
GPT-4とClaude 3 Opusを使用して、さまざまなプロファイル、子供時代の記憶、アタッチメントスタイルを持つ大人をシミュレートするエージェントを作成します。
我々は,同一の面接プロトコルを施行し,精神保健専門家によって分析・ラベル付けされた9人のヒトの転写データセットを用いて,我々のモデルを評価した。
以上の結果から,合成データのみを用いたモデルトレーニングは,人間のデータを用いたモデルトレーニングに匹敵する性能を発揮することが示唆された。
論文 参考訳(メタデータ) (2024-08-31T04:29:19Z) - GSQA: An End-to-End Model for Generative Spoken Question Answering [54.418723701886115]
本稿では,システムに抽象的推論を強制するGSQA(Generative Spoken Question Answering)モデルを提案する。
本モデルでは, 抽出QAデータセットにおいて, 従来の抽出モデルよりも3%上回っている。
我々のGSQAモデルは、幅広い質問に一般化する可能性を示し、それによって、抽象的QAの音声質問応答能力をさらに拡張する。
論文 参考訳(メタデータ) (2023-12-15T13:33:18Z) - Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models [115.501751261878]
人為的なデータに基づく微調整言語モデル(LM)が普及している。
我々は、スカラーフィードバックにアクセス可能なタスクにおいて、人間のデータを超えることができるかどうか検討する。
ReST$EM$はモデルサイズに好適にスケールし、人間のデータのみによる微調整を大幅に上回っていることがわかった。
論文 参考訳(メタデータ) (2023-12-11T18:17:43Z) - A Lightweight Method to Generate Unanswerable Questions in English [18.323248259867356]
本稿では,英語における疑問生成のための簡易なデータ拡張手法について検討する。
回答可能な質問に対して、Antonymとエンティティスワップを実行します。
従来の最先端技術と比較すると、トレーニング不要で軽量な戦略で生成されたデータにより、より良いモデルが得られます。
論文 参考訳(メタデータ) (2023-10-30T10:14:52Z) - QUADRo: Dataset and Models for QUestion-Answer Database Retrieval [97.84448420852854]
質問/回答(q/a)ペアのデータベース(DB)が与えられた場合、同じ質問に対してDBをスキャンすることで、対象の質問に答えることができる。
我々は6.3Mのq/aペアからなる大規模DBを構築し、公開質問を用いて、ニューラルIRとq/aペアリランカに基づく新しいシステムを設計する。
我々は、Bing検索エンジン上に構築されたQAシステムという、Webベースの手法とDBベースのアプローチが競合することを示す。
論文 参考訳(メタデータ) (2023-03-30T00:42:07Z) - Improving Question Answering Model Robustness with Synthetic Adversarial
Data Generation [41.9785159975426]
最先端の質問応答モデルは、様々な敵の攻撃を受けやすいままであり、人間レベルの言語理解を得るには程遠い。
提案されている1つの方法は動的逆データ収集であり、人間のアノテータがループ内のモデルが失敗する例を作成しようとするものである。
本研究では,合成逆データ生成パイプラインを構成する複数の回答選択,質問生成,フィルタリング手法について検討する。
合成データと人為的データの両方で訓練されたモデルは、合成逆数データで訓練されていないモデルより優れ、対数上での最先端の結果を得る
論文 参考訳(メタデータ) (2021-04-18T02:00:06Z) - Stacking Neural Network Models for Automatic Short Answer Scoring [0.0]
本稿では,ニューラルネットワークとXGBoostに基づく重ね合わせモデルを用いて文埋め込み機能を持つ分類プロセスを提案する。
ベストモデルではF1スコアの0.821が、同じデータセットで前の作業を上回った。
論文 参考訳(メタデータ) (2020-10-21T16:00:09Z) - When in Doubt, Ask: Generating Answerable and Unanswerable Questions,
Unsupervised [0.0]
質問回答(QA)は、人と機械間の堅牢なコミュニケーションを可能にするための鍵である。
現代のQAで使用される言語モデルは、いくつかの重要なタスクにおいて人間のパフォーマンスを上回っている。
本稿では,この問題を克服する手段として,人工データを用いた人為的データセットの強化について検討する。
論文 参考訳(メタデータ) (2020-10-04T15:56:44Z) - Selective Question Answering under Domain Shift [90.021577320085]
モデルがドメイン外の入力に対して過度に信頼されているため、モデルのソフトマックス確率のみに基づくアテンションポリシーは不適切である。
キャリブレータをトレーニングして、QAモデルがアースする入力を識別し、エラーを予測した場合に停止する。
提案手法は,80%の精度を維持しながら56%の質問に回答するが,それに対してモデルの確率を直接使用する場合,80%の精度で48%しか回答しない。
論文 参考訳(メタデータ) (2020-06-16T19:13:21Z) - Harvesting and Refining Question-Answer Pairs for Unsupervised QA [95.9105154311491]
教師なし質問回答(QA)を改善するための2つのアプローチを提案する。
まず、ウィキペディアから語彙的・構文的に異なる質問を抽出し、質問応答対のコーパスを自動的に構築する(RefQAと名づけられる)。
第2に、より適切な回答を抽出するためにQAモデルを活用し、RefQA上でデータを反復的に洗練する。
論文 参考訳(メタデータ) (2020-05-06T15:56:06Z) - Template-Based Question Generation from Retrieved Sentences for Improved
Unsupervised Question Answering [98.48363619128108]
擬似学習データを用いてQAモデルを訓練するための教師なしアプローチを提案する。
関連した検索文に簡単なテンプレートを適用してQA学習のための質問を生成すると、元の文脈文よりも、下流QAのパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2020-04-24T17:57:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。