論文の概要: On the Role of Dataset Quality and Heterogeneity in Model Confidence
- arxiv url: http://arxiv.org/abs/2002.09831v1
- Date: Sun, 23 Feb 2020 05:13:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-29 09:21:37.706348
- Title: On the Role of Dataset Quality and Heterogeneity in Model Confidence
- Title(参考訳): モデル信頼におけるデータセットの品質と不均一性の役割について
- Authors: Yuan Zhao, Jiasi Chen, Samet Oymak
- Abstract要約: 安全クリティカルなアプリケーションは、正確で校正された確率を出力する機械学習モデルを必要とする。
未分類のディープネットワークは、過度に信頼された予測をすることが知られている。
本研究では,データセットサイズとラベルノイズがモデルの信頼性に与える影響について検討した。
- 参考スコア(独自算出の注目度): 27.657631193015252
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safety-critical applications require machine learning models that output
accurate and calibrated probabilities. While uncalibrated deep networks are
known to make over-confident predictions, it is unclear how model confidence is
impacted by the variations in the data, such as label noise or class size. In
this paper, we investigate the role of the dataset quality by studying the
impact of dataset size and the label noise on the model confidence. We
theoretically explain and experimentally demonstrate that, surprisingly, label
noise in the training data leads to under-confident networks, while reduced
dataset size leads to over-confident models. We then study the impact of
dataset heterogeneity, where data quality varies across classes, on model
confidence. We demonstrate that this leads to heterogenous confidence/accuracy
behavior in the test data and is poorly handled by the standard calibration
algorithms. To overcome this, we propose an intuitive heterogenous calibration
technique and show that the proposed approach leads to improved calibration
metrics (both average and worst-case errors) on the CIFAR datasets.
- Abstract(参考訳): 安全クリティカルなアプリケーションは、正確で校正された確率を出力する機械学習モデルを必要とする。
未分類のディープネットワークは、過度に信頼された予測を行うことが知られているが、ラベルノイズやクラスサイズなどのデータの変化によってモデル信頼性がどのような影響を受けるかは明らかではない。
本稿では,データセットサイズとラベルノイズがモデルの信頼性に与える影響について検討し,データセット品質の役割について検討する。
理論的に説明し、実験により、トレーニングデータ中のラベルノイズが信頼度の低いネットワークにつながり、データセットサイズが小さくなると信頼度の過大なモデルに繋がることを示した。
次に,データ品質がクラスによって異なるデータセットの不均一性がモデルの信頼性に与える影響について検討する。
テストデータに不均一な信頼性・正確性をもたらすことが示され、標準校正アルゴリズムでは処理が不十分である。
これを解決するために,直感的な異種校正手法を提案し,提案手法がCIFARデータセットの校正基準(平均誤差と最悪の誤差の両方)の改善につながることを示した。
関連論文リスト
- Conformal Prediction for Federated Graph Neural Networks with Missing Neighbor Information [2.404163279345609]
本研究は,連合グラフ学習へのコンフォーマル予測の適用性を拡張した。
分散サブグラフにおけるリンク不足問題に対処し、CPセットサイズに対する悪影響を最小限に抑える。
本稿では,欠落したデータに対する負の影響を軽減するために,変分オートエンコーダに基づく近隣住民の再構築手法を提案する。
論文 参考訳(メタデータ) (2024-10-17T20:22:25Z) - CALICO: Confident Active Learning with Integrated Calibration [11.978551396144532]
トレーニングプロセス中にサンプル選択に使用される信頼度を自己校正するALフレームワークを提案する。
ラベル付きサンプルが少ないソフトマックス分類器と比較して,分類性能が向上した。
論文 参考訳(メタデータ) (2024-07-02T15:05:19Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Binary Classification with Confidence Difference [100.08818204756093]
本稿では,信頼性差分法 (ConfDiff) という,弱教師付き二項分類問題について考察する。
本稿では,この問題に対処するためのリスク一貫性のあるアプローチを提案し,推定誤差が最適収束率と一致することを示す。
また,整合性や収束率も証明されたオーバーフィッティング問題を緩和するためのリスク補正手法も導入する。
論文 参考訳(メタデータ) (2023-10-09T11:44:50Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UALは、データ不確実性とモデル不確実性を同時に考慮し、信頼性に配慮した予測を提供することを目的としている。
データ不確実性はサンプル固有のノイズを捕捉する」一方、モデル不確実性はサンプルの予測に対するモデルの信頼を表現している。
論文 参考訳(メタデータ) (2022-10-24T17:53:20Z) - Estimating Model Performance under Domain Shifts with Class-Specific
Confidence Scores [25.162667593654206]
不均衡なデータセットのパフォーマンス推定の枠組みの中で,クラスワイドキャリブレーションを導入する。
我々は、4つのタスクの実験を行い、提案した修正により、不均衡なデータセットの推定精度を一貫して改善する。
論文 参考訳(メタデータ) (2022-07-20T15:04:32Z) - Certifying Data-Bias Robustness in Linear Regression [12.00314910031517]
本稿では, 線形回帰モデルが学習データセットのラベルバイアスに対して, ポイントワイズで損なわれているかどうかを検証する手法を提案する。
この問題を個々のテストポイントに対して正確に解く方法を示し、近似的だがよりスケーラブルな方法を提供する。
また、いくつかのデータセット上の特定のバイアス仮定に対して、高いレベルの非腐食性など、バイアス-腐食性のギャップを掘り下げる。
論文 参考訳(メタデータ) (2022-06-07T20:47:07Z) - Assessing the Quality of the Datasets by Identifying Mislabeled Samples [14.881597737762316]
本稿では,各データ点の品質を測る指標として,新しい統計値(ノイズスコア)を提案する。
本研究では,データ品質管理型変分オートエンコーダ(AQUAVS)の推論ネットワークから導出される表現を用いる。
我々は、MNIST、FashionMNIST、CIFAR10/100データセットを破損させることにより、提案した統計データを検証した。
論文 参考訳(メタデータ) (2021-09-10T17:14:09Z) - Learning from Similarity-Confidence Data [94.94650350944377]
類似度信頼性(Sconf)データから学習する新しい弱監督学習問題について検討する。
本研究では,Sconfデータのみから計算可能な分類リスクの非バイアス推定器を提案し,推定誤差境界が最適収束率を達成することを示す。
論文 参考訳(メタデータ) (2021-02-13T07:31:16Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
本稿では,トレーニングデータの密度と制御性能の関係を考察する。
データセットの品質尺度を定式化し、$rho$-gap と呼ぶ。
フィードバック線形化制御法に$rho$-gapを適用する方法を示す。
論文 参考訳(メタデータ) (2020-05-25T12:13:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。