On the Estimation of Complex Circuits Functional Failure Rate by Machine
Learning Techniques
- URL: http://arxiv.org/abs/2002.09945v1
- Date: Tue, 18 Feb 2020 15:18:31 GMT
- Title: On the Estimation of Complex Circuits Functional Failure Rate by Machine
Learning Techniques
- Authors: Thomas Lange, Aneesh Balakrishnan, Maximilien Glorieux, Dan
Alexandrescu, Luca Sterpone
- Abstract summary: De-Rating or Vulnerability Factors are a major feature of failure analysis efforts mandated by today's Functional Safety requirements.
New approach is proposed which uses Machine Learning to estimate the Functional De-Rating of individual flip-flops.
- Score: 0.16311150636417257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: De-Rating or Vulnerability Factors are a major feature of failure analysis
efforts mandated by today's Functional Safety requirements. Determining the
Functional De-Rating of sequential logic cells typically requires
computationally intensive fault-injection simulation campaigns. In this paper a
new approach is proposed which uses Machine Learning to estimate the Functional
De-Rating of individual flip-flops and thus, optimising and enhancing fault
injection efforts. Therefore, first, a set of per-instance features is
described and extracted through an analysis approach combining static elements
(cell properties, circuit structure, synthesis attributes) and dynamic elements
(signal activity). Second, reference data is obtained through first-principles
fault simulation approaches. Finally, one part of the reference dataset is used
to train the Machine Learning algorithm and the remaining is used to validate
and benchmark the accuracy of the trained tool. The intended goal is to obtain
a trained model able to provide accurate per-instance Functional De-Rating data
for the full list of circuit instances, an objective that is difficult to reach
using classical methods. The presented methodology is accompanied by a
practical example to determine the performance of various Machine Learning
models for different training sizes.
Related papers
- Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - Learning Operators with Coupled Attention [9.715465024071333]
We propose a novel operator learning method, LOCA, motivated from the recent success of the attention mechanism.
In our architecture the input functions are mapped to a finite set of features which are then averaged with attention weights that depend on the output query locations.
By coupling these attention weights together with an integral transform, LOCA is able to explicitly learn correlations in the target output functions.
arXiv Detail & Related papers (2022-01-04T08:22:03Z) - Structured Prediction for CRiSP Inverse Kinematics Learning with
Misspecified Robot Models [39.513301957826435]
We introduce a structured prediction algorithm that combines a data-driven strategy with a forward kinematics function.
The proposed approach ensures that predicted joint configurations are well within the robot's constraints.
arXiv Detail & Related papers (2021-02-25T15:39:33Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
We propose a new framework for statistical machine learning of target functions arising as identifiable functionals from statistical models.
This framework is problem- and model-agnostic and can be used to estimate a broad variety of target parameters of interest in applied statistics.
We put particular focus on so-called coarsening at random/doubly robust problems with partially unobserved information.
arXiv Detail & Related papers (2020-08-14T16:48:29Z) - Learning Generalized Relational Heuristic Networks for Model-Agnostic
Planning [29.714818991696088]
This paper develops a new approach for learning generalizeds in the absence of symbolic action models.
It uses an abstract state representation to facilitate data efficient, generalizable learning.
arXiv Detail & Related papers (2020-07-10T06:08:28Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z) - Machine Learning to Tackle the Challenges of Transient and Soft Errors
in Complex Circuits [0.16311150636417257]
Machine learning models are used to predict accurate per-instance Functional De-Rating data for the full list of circuit instances.
The presented methodology is applied on a practical example and various machine learning models are evaluated and compared.
arXiv Detail & Related papers (2020-02-18T18:38:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.