Estimating Structural Target Functions using Machine Learning and
Influence Functions
- URL: http://arxiv.org/abs/2008.06461v3
- Date: Mon, 8 Feb 2021 13:15:52 GMT
- Title: Estimating Structural Target Functions using Machine Learning and
Influence Functions
- Authors: Alicia Curth and Ahmed M. Alaa and Mihaela van der Schaar
- Abstract summary: We propose a new framework for statistical machine learning of target functions arising as identifiable functionals from statistical models.
This framework is problem- and model-agnostic and can be used to estimate a broad variety of target parameters of interest in applied statistics.
We put particular focus on so-called coarsening at random/doubly robust problems with partially unobserved information.
- Score: 103.47897241856603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We aim to construct a class of learning algorithms that are of practical
value to applied researchers in fields such as biostatistics, epidemiology and
econometrics, where the need to learn from incompletely observed information is
ubiquitous. We propose a new framework for statistical machine learning of
target functions arising as identifiable functionals from statistical models,
which we call `IF-learning' due to its reliance on influence functions (IFs).
This framework is problem- and model-agnostic and can be used to estimate a
broad variety of target parameters of interest in applied statistics: we can
consider any target function for which an IF of a population-averaged version
exists in analytic form. Throughout, we put particular focus on so-called
coarsening at random/doubly robust problems with partially unobserved
information. This includes problems such as treatment effect estimation and
inference in the presence of missing outcome data. Within this framework, we
propose two general learning algorithms that build on the idea of nonparametric
plug-in bias removal via IFs: the 'IF-learner' which uses pseudo-outcomes
motivated by uncentered IFs for regression in large samples and outputs entire
target functions without confidence bands, and the 'Group-IF-learner', which
outputs only approximations to a function but can give confidence estimates if
sufficient information on coarsening mechanisms is available. We apply both in
a simulation study on inferring treatment effects.
Related papers
- Exploiting the Data Gap: Utilizing Non-ignorable Missingness to Manipulate Model Learning [13.797822374912773]
Adversarial Missingness (AM) attacks are motivated by maliciously engineering non-ignorable missingness mechanisms.
In this work we focus on associational learning in the context of AM attacks.
We formulate the learning of the adversarial missingness mechanism as a bi-level optimization.
arXiv Detail & Related papers (2024-09-06T17:10:28Z) - Towards Better Modeling with Missing Data: A Contrastive Learning-based
Visual Analytics Perspective [7.577040836988683]
Missing data can pose a challenge for machine learning (ML) modeling.
Current approaches are categorized into feature imputation and label prediction.
This study proposes a Contrastive Learning framework to model observed data with missing values.
arXiv Detail & Related papers (2023-09-18T13:16:24Z) - FAStEN: An Efficient Adaptive Method for Feature Selection and Estimation in High-Dimensional Functional Regressions [7.674715791336311]
We propose a new, flexible and ultra-efficient approach to perform feature selection in a sparse function-on-function regression problem.
We show how to extend it to the scalar-on-function framework.
We present an application to brain fMRI data from the AOMIC PIOP1 study.
arXiv Detail & Related papers (2023-03-26T19:41:17Z) - On the Efficacy of Generalization Error Prediction Scoring Functions [33.24980750651318]
Generalization error predictors (GEPs) aim to predict model performance on unseen distributions by deriving dataset-level error estimates from sample-level scores.
We rigorously study the effectiveness of popular scoring functions (confidence, local manifold smoothness, model agreement) independent of mechanism choice.
arXiv Detail & Related papers (2023-03-23T18:08:44Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
We propose a causally-aware imputation algorithm (MIRACLE) for missing data.
MIRACLE iteratively refines the imputation of a baseline by simultaneously modeling the missingness generating mechanism.
We conduct extensive experiments on synthetic and a variety of publicly available datasets to show that MIRACLE is able to consistently improve imputation.
arXiv Detail & Related papers (2021-11-04T22:38:18Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z) - On the Estimation of Complex Circuits Functional Failure Rate by Machine
Learning Techniques [0.16311150636417257]
De-Rating or Vulnerability Factors are a major feature of failure analysis efforts mandated by today's Functional Safety requirements.
New approach is proposed which uses Machine Learning to estimate the Functional De-Rating of individual flip-flops.
arXiv Detail & Related papers (2020-02-18T15:18:31Z) - Localized Debiased Machine Learning: Efficient Inference on Quantile
Treatment Effects and Beyond [69.83813153444115]
We consider an efficient estimating equation for the (local) quantile treatment effect ((L)QTE) in causal inference.
Debiased machine learning (DML) is a data-splitting approach to estimating high-dimensional nuisances.
We propose localized debiased machine learning (LDML), which avoids this burdensome step.
arXiv Detail & Related papers (2019-12-30T14:42:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.