Causal Strategic Linear Regression
- URL: http://arxiv.org/abs/2002.10066v3
- Date: Thu, 25 Aug 2022 07:42:33 GMT
- Title: Causal Strategic Linear Regression
- Authors: Yonadav Shavit, Benjamin Edelman, Brian Axelrod
- Abstract summary: In many predictive decision-making scenarios, such as credit scoring and academic testing, a decision-maker must construct a model that accounts for agents' propensity to "game" the decision rule.
We join concurrent work in modeling agents' outcomes as a function of their changeable attributes.
We provide efficient algorithms for learning decision rules that optimize three distinct decision-maker objectives.
- Score: 5.672132510411465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many predictive decision-making scenarios, such as credit scoring and
academic testing, a decision-maker must construct a model that accounts for
agents' propensity to "game" the decision rule by changing their features so as
to receive better decisions. Whereas the strategic classification literature
has previously assumed that agents' outcomes are not causally affected by their
features (and thus that strategic agents' goal is deceiving the
decision-maker), we join concurrent work in modeling agents' outcomes as a
function of their changeable attributes. As our main contribution, we provide
efficient algorithms for learning decision rules that optimize three distinct
decision-maker objectives in a realizable linear setting: accurately predicting
agents' post-gaming outcomes (prediction risk minimization), incentivizing
agents to improve these outcomes (agent outcome maximization), and estimating
the coefficients of the true underlying model (parameter estimation). Our
algorithms circumvent a hardness result of Miller et al. (2020) by allowing the
decision maker to test a sequence of decision rules and observe agents'
responses, in effect performing causal interventions through the decision
rules.
Related papers
- Algorithmic Decision-Making under Agents with Persistent Improvement [9.296248945826084]
We study algorithmic decision-making under human's strategic behavior.
We first develop a dynamic model to characterize persistent improvements.
We then study how the decision-maker can design an optimal policy to incentivize the largest improvements inside the agent population.
arXiv Detail & Related papers (2024-05-03T01:36:35Z) - Modeling Boundedly Rational Agents with Latent Inference Budgets [56.24971011281947]
We introduce a latent inference budget model (L-IBM) that models agents' computational constraints explicitly.
L-IBMs make it possible to learn agent models using data from diverse populations of suboptimal actors.
We show that L-IBMs match or outperform Boltzmann models of decision-making under uncertainty.
arXiv Detail & Related papers (2023-12-07T03:55:51Z) - Online Decision Mediation [72.80902932543474]
Consider learning a decision support assistant to serve as an intermediary between (oracle) expert behavior and (imperfect) human behavior.
In clinical diagnosis, fully-autonomous machine behavior is often beyond ethical affordances.
arXiv Detail & Related papers (2023-10-28T05:59:43Z) - Causal Strategic Learning with Competitive Selection [10.237954203296187]
We study the problem of agent selection in causal strategic learning under multiple decision makers.
We show that the optimal selection rule is a trade-off between selecting the best agents and providing incentives to maximise the agents' improvement.
We provide a cooperative protocol which all decision makers must collectively adopt to recover the true causal parameters.
arXiv Detail & Related papers (2023-08-30T18:43:11Z) - Rational Decision-Making Agent with Internalized Utility Judgment [91.80700126895927]
Large language models (LLMs) have demonstrated remarkable advancements and have attracted significant efforts to develop LLMs into agents capable of executing intricate multi-step decision-making tasks beyond traditional NLP applications.
This paper proposes RadAgent, which fosters the development of its rationality through an iterative framework involving Experience Exploration and Utility Learning.
Experimental results on the ToolBench dataset demonstrate RadAgent's superiority over baselines, achieving over 10% improvement in Pass Rate on diverse tasks.
arXiv Detail & Related papers (2023-08-24T03:11:45Z) - On the Complexity of Adversarial Decision Making [101.14158787665252]
We show that the Decision-Estimation Coefficient is necessary and sufficient to obtain low regret for adversarial decision making.
We provide new structural results that connect the Decision-Estimation Coefficient to variants of other well-known complexity measures.
arXiv Detail & Related papers (2022-06-27T06:20:37Z) - Explainability's Gain is Optimality's Loss? -- How Explanations Bias
Decision-making [0.0]
Explanations help to facilitate communication between the algorithm and the human decision-maker.
Feature-based explanations' semantics of causal models induce leakage from the decision-maker's prior beliefs.
Such differences can lead to sub-optimal and biased decision outcomes.
arXiv Detail & Related papers (2022-06-17T11:43:42Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
We show how to develop interpretable representations of how agents make decisions.
By understanding the decision-making processes underlying a set of observed trajectories, we cast the policy inference problem as the inverse to this online learning problem.
We introduce a practical algorithm for retrospectively estimating such perceived effects, alongside the process through which agents update them.
Through application to the analysis of UNOS organ donation acceptance decisions, we demonstrate that our approach can bring valuable insights into the factors that govern decision processes and how they change over time.
arXiv Detail & Related papers (2022-03-14T17:40:42Z) - Bayesian Persuasion for Algorithmic Recourse [28.586165301962485]
In some situations, the underlying predictive model is deliberately kept secret to avoid gaming.
This opacity forces the decision subjects to rely on incomplete information when making strategic feature modifications.
We capture such settings as a game of Bayesian persuasion, in which the decision-maker sends a signal, e.g., an action recommendation, to a decision subject to incentivize them to take desirable actions.
arXiv Detail & Related papers (2021-12-12T17:18:54Z) - Inverse Active Sensing: Modeling and Understanding Timely
Decision-Making [111.07204912245841]
We develop a framework for the general setting of evidence-based decision-making under endogenous, context-dependent time pressure.
We demonstrate how it enables modeling intuitive notions of surprise, suspense, and optimality in decision strategies.
arXiv Detail & Related papers (2020-06-25T02:30:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.