Algorithmic Decision-Making under Agents with Persistent Improvement
- URL: http://arxiv.org/abs/2405.01807v3
- Date: Fri, 13 Sep 2024 13:25:04 GMT
- Title: Algorithmic Decision-Making under Agents with Persistent Improvement
- Authors: Tian Xie, Xuwei Tan, Xueru Zhang,
- Abstract summary: We study algorithmic decision-making under human's strategic behavior.
We first develop a dynamic model to characterize persistent improvements.
We then study how the decision-maker can design an optimal policy to incentivize the largest improvements inside the agent population.
- Score: 9.296248945826084
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper studies algorithmic decision-making under human's strategic behavior, where a decision maker uses an algorithm to make decisions about human agents, and the latter with information about the algorithm may exert effort strategically and improve to receive favorable decisions. Unlike prior works that assume agents benefit from their efforts immediately, we consider realistic scenarios where the impacts of these efforts are persistent and agents benefit from efforts by making improvements gradually. We first develop a dynamic model to characterize persistent improvements and based on this construct a Stackelberg game to model the interplay between agents and the decision-maker. We analytically characterize the equilibrium strategies and identify conditions under which agents have incentives to improve. With the dynamics, we then study how the decision-maker can design an optimal policy to incentivize the largest improvements inside the agent population. We also extend the model to settings where 1) agents may be dishonest and game the algorithm into making favorable but erroneous decisions; 2) honest efforts are forgettable and not sufficient to guarantee persistent improvements. With the extended models, we further examine conditions under which agents prefer honest efforts over dishonest behavior and the impacts of forgettable efforts.
Related papers
- Satisficing Exploration for Deep Reinforcement Learning [26.73584163318647]
In complex environments that approach the vastness and scale of the real world, attaining optimal performance may in fact be an entirely intractable endeavor.
Recent work has leveraged tools from information theory to design agents that deliberately forgo optimal solutions in favor of sufficiently-satisfying or satisficing solutions.
We extend an agent that directly represents uncertainty over the optimal value function allowing it to both bypass the need for model-based planning and to learn satisficing policies.
arXiv Detail & Related papers (2024-07-16T21:28:03Z) - DCIR: Dynamic Consistency Intrinsic Reward for Multi-Agent Reinforcement
Learning [84.22561239481901]
We propose a new approach that enables agents to learn whether their behaviors should be consistent with that of other agents.
We evaluate DCIR in multiple environments including Multi-agent Particle, Google Research Football and StarCraft II Micromanagement.
arXiv Detail & Related papers (2023-12-10T06:03:57Z) - Modeling Boundedly Rational Agents with Latent Inference Budgets [56.24971011281947]
We introduce a latent inference budget model (L-IBM) that models agents' computational constraints explicitly.
L-IBMs make it possible to learn agent models using data from diverse populations of suboptimal actors.
We show that L-IBMs match or outperform Boltzmann models of decision-making under uncertainty.
arXiv Detail & Related papers (2023-12-07T03:55:51Z) - Optimising Human-AI Collaboration by Learning Convincing Explanations [62.81395661556852]
We propose a method for a collaborative system that remains safe by having a human making decisions.
Ardent enables efficient and effective decision-making by adapting to individual preferences for explanations.
arXiv Detail & Related papers (2023-11-13T16:00:16Z) - Causal Strategic Learning with Competitive Selection [10.237954203296187]
We study the problem of agent selection in causal strategic learning under multiple decision makers.
We show that the optimal selection rule is a trade-off between selecting the best agents and providing incentives to maximise the agents' improvement.
We provide a cooperative protocol which all decision makers must collectively adopt to recover the true causal parameters.
arXiv Detail & Related papers (2023-08-30T18:43:11Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
We show how to develop interpretable representations of how agents make decisions.
By understanding the decision-making processes underlying a set of observed trajectories, we cast the policy inference problem as the inverse to this online learning problem.
We introduce a practical algorithm for retrospectively estimating such perceived effects, alongside the process through which agents update them.
Through application to the analysis of UNOS organ donation acceptance decisions, we demonstrate that our approach can bring valuable insights into the factors that govern decision processes and how they change over time.
arXiv Detail & Related papers (2022-03-14T17:40:42Z) - Deceptive Decision-Making Under Uncertainty [25.197098169762356]
We study the design of autonomous agents that are capable of deceiving outside observers about their intentions while carrying out tasks.
By modeling the agent's behavior as a Markov decision process, we consider a setting where the agent aims to reach one of multiple potential goals.
We propose a novel approach to model observer predictions based on the principle of maximum entropy and to efficiently generate deceptive strategies.
arXiv Detail & Related papers (2021-09-14T14:56:23Z) - Policy Gradient Bayesian Robust Optimization for Imitation Learning [49.881386773269746]
We derive a novel policy gradient-style robust optimization approach, PG-BROIL, to balance expected performance and risk.
Results suggest PG-BROIL can produce a family of behaviors ranging from risk-neutral to risk-averse.
arXiv Detail & Related papers (2021-06-11T16:49:15Z) - Stateful Strategic Regression [20.7177095411398]
We describe the Stackelberg equilibrium of the resulting game and provide novel algorithms for computing it.
Our analysis reveals several intriguing insights about the role of multiple interactions in shaping the game's outcome.
Most importantly, we show that with multiple rounds of interaction at her disposal, the principal is more effective at incentivizing the agent to accumulate effort in her desired direction.
arXiv Detail & Related papers (2021-06-07T17:46:29Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
We show that simple model-based agents can outperform state-of-the-art model-free agents in terms of both sample-efficiency and final reward.
Our findings suggest that model-based policy evaluation deserves closer attention.
arXiv Detail & Related papers (2020-08-28T17:58:29Z) - Causal Strategic Linear Regression [5.672132510411465]
In many predictive decision-making scenarios, such as credit scoring and academic testing, a decision-maker must construct a model that accounts for agents' propensity to "game" the decision rule.
We join concurrent work in modeling agents' outcomes as a function of their changeable attributes.
We provide efficient algorithms for learning decision rules that optimize three distinct decision-maker objectives.
arXiv Detail & Related papers (2020-02-24T03:57:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.