論文の概要: Better Classifier Calibration for Small Data Sets
- arxiv url: http://arxiv.org/abs/2002.10199v2
- Date: Mon, 25 May 2020 09:15:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-29 03:01:54.269938
- Title: Better Classifier Calibration for Small Data Sets
- Title(参考訳): 小型データセットの分類器校正の改善
- Authors: Tuomo Alasalmi, Jaakko Suutala, Heli Koskim\"aki, and Juha R\"oning
- Abstract要約: キャリブレーションのためのデータ生成により,キャリブレーションアルゴリズムの性能が向上することを示す。
提案手法は計算コストを増大させるが、主なユースケースは小さなデータセットであるので、この余分な計算コストは重要ではない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classifier calibration does not always go hand in hand with the classifier's
ability to separate the classes. There are applications where good classifier
calibration, i.e. the ability to produce accurate probability estimates, is
more important than class separation. When the amount of data for training is
limited, the traditional approach to improve calibration starts to crumble. In
this article we show how generating more data for calibration is able to
improve calibration algorithm performance in many cases where a classifier is
not naturally producing well-calibrated outputs and the traditional approach
fails. The proposed approach adds computational cost but considering that the
main use case is with small data sets this extra computational cost stays
insignificant and is comparable to other methods in prediction time. From the
tested classifiers the largest improvement was detected with the random forest
and naive Bayes classifiers. Therefore, the proposed approach can be
recommended at least for those classifiers when the amount of data available
for training is limited and good calibration is essential.
- Abstract(参考訳): 分類器の校正は、クラスを分離する分類器の能力と相まってはならない。
優れた分類器の校正、すなわち正確な確率推定を生成する能力が、クラス分離よりも重要であるという応用もある。
トレーニング用のデータ量が限られると、キャリブレーションを改善する従来のアプローチが崩壊し始めます。
本稿では,キャリブレーションのためのデータ生成がキャリブレーションアルゴリズムの性能を向上させる方法を示す。
提案手法は計算コストを増大させるが、主なユースケースは、この余分な計算コストが重要で、予測時間において他の手法に匹敵するものであることを考える。
試験された分類器から,無作為林とナイーブベイズ分類器で最大の改善が検出された。
したがって,トレーニングに必要なデータ量が限られており,キャリブレーションが良好である場合には,少なくとも分類器に対しては,提案手法を推奨することができる。
関連論文リスト
- Confidence Calibration of Classifiers with Many Classes [5.018156030818883]
ニューラルネットワークに基づく分類モデルでは、最大クラス確率が信頼スコアとしてしばしば使用される。
このスコアは正しい予測を行う確率を十分に予測することは滅多になく、後処理のキャリブレーションステップを必要とする。
論文 参考訳(メタデータ) (2024-11-05T10:51:01Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
カーネルベースのキャリブレーションメトリクスを導入し、分類と回帰の両方で一般的なキャリブレーションの形式を統一・一般化する。
これらの指標は、異なるサンプル推定を許容しており、キャリブレーションの目的を経験的リスク最小化に組み込むのが容易である。
決定タスクにキャリブレーションメトリクスを調整し、正確な損失推定を行ない、後悔しない決定を行うための直感的なメカニズムを提供する。
論文 参考訳(メタデータ) (2023-10-31T06:19:40Z) - On Calibrating Semantic Segmentation Models: Analyses and An Algorithm [51.85289816613351]
セマンティックセグメンテーションキャリブレーションの問題について検討する。
モデルキャパシティ、作物サイズ、マルチスケールテスト、予測精度はキャリブレーションに影響を及ぼす。
我々は、単純で統一的で効果的なアプローチ、すなわち選択的スケーリングを提案する。
論文 参考訳(メタデータ) (2022-12-22T22:05:16Z) - Class-wise and reduced calibration methods [0.0]
キャリブレーションの削減により、元の問題をより単純なものに変換する方法を示す。
第2に,ニューラル崩壊という現象に基づいて,クラスワイドキャリブレーション手法を提案する。
この2つの手法を併用すると、予測とクラスごとの校正誤差を低減する強力なツールであるクラス単位での校正アルゴリズムが実現される。
論文 参考訳(メタデータ) (2022-10-07T17:13:17Z) - T-Cal: An optimal test for the calibration of predictive models [49.11538724574202]
有限検証データセットを用いた予測モデルの誤校正を仮説検証問題として検討する。
誤校正の検出は、クラスの条件付き確率が予測の十分滑らかな関数である場合にのみ可能である。
我々は、$ell$-Expected Error(ECE)のデバイアスドプラグイン推定器に基づくキャリブレーションのためのミニマックステストであるT-Calを提案する。
論文 参考訳(メタデータ) (2022-03-03T16:58:54Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z) - Uncertainty Quantification and Deep Ensembles [79.4957965474334]
ディープアンサンブルが必ずしもキャリブレーション特性の改善につながるとは限らないことを示す。
そこで本研究では,混成正規化などの現代的な手法と併用して標準アンサンブル法を用いることで,キャリブレーションの少ないモデルが得られることを示す。
このテキストは、データが不足しているときにディープラーニングを活用するために、最も単純で一般的な3つのアプローチの相互作用を調べる。
論文 参考訳(メタデータ) (2020-07-17T07:32:24Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
ドメインシフト下でのキャリブレーションの問題を導入し、それに対処するための重要サンプリングに基づくアプローチを提案する。
実世界のデータセットと合成データセットの両方において,本手法の有効性を評価し検討した。
論文 参考訳(メタデータ) (2020-06-29T21:50:07Z) - Multi-Class Uncertainty Calibration via Mutual Information
Maximization-based Binning [8.780958735684958]
ポストホック多クラスキャリブレーションは、ディープニューラルネットワーク予測の信頼度推定を提供する一般的なアプローチである。
近年の研究では、広く使われているスケーリング手法がキャリブレーション誤差を過小評価していることが示されている。
類似クラス間で1つのキャリブレータを共有する共有クラスワイド(sCW)キャリブレーション戦略を提案する。
論文 参考訳(メタデータ) (2020-06-23T15:31:59Z) - Mix-n-Match: Ensemble and Compositional Methods for Uncertainty
Calibration in Deep Learning [21.08664370117846]
我々は,Mix-n-Matchキャリブレーション戦略が,データ効率と表現力を大幅に向上することを示す。
標準評価プラクティスの潜在的な問題も明らかにします。
我々の手法はキャリブレーションと評価タスクの両方において最先端のソリューションより優れている。
論文 参考訳(メタデータ) (2020-03-16T17:00:35Z) - Better Multi-class Probability Estimates for Small Data Sets [0.0]
我々は,データ生成とグループ化のアルゴリズムが多クラス問題の解決に有効であることを示す。
実験により,提案手法を用いてキャリブレーション誤差を低減し,計算コストの増大を許容できることを示した。
論文 参考訳(メタデータ) (2020-01-30T10:21:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。