論文の概要: TensorShield: Tensor-based Defense Against Adversarial Attacks on Images
- arxiv url: http://arxiv.org/abs/2002.10252v1
- Date: Tue, 18 Feb 2020 00:39:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-30 19:05:54.440163
- Title: TensorShield: Tensor-based Defense Against Adversarial Attacks on Images
- Title(参考訳): TensorShield: 画像上の敵攻撃に対するテンソルベースの防御
- Authors: Negin Entezari, Evangelos E. Papalexakis
- Abstract要約: 近年の研究では、ディープニューラルネットワーク(DNN)のような機械学習アプローチが、敵の攻撃によって簡単に騙されることが示されている。
本稿では,テンソル分解法を前処理のステップとして利用して,高頻度摂動を著しく排除できる画像の低ランク近似を求める。
- 参考スコア(独自算出の注目度): 7.080154188969453
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies have demonstrated that machine learning approaches like deep
neural networks (DNNs) are easily fooled by adversarial attacks. Subtle and
imperceptible perturbations of the data are able to change the result of deep
neural networks. Leveraging vulnerable machine learning methods raises many
concerns especially in domains where security is an important factor.
Therefore, it is crucial to design defense mechanisms against adversarial
attacks. For the task of image classification, unnoticeable perturbations
mostly occur in the high-frequency spectrum of the image. In this paper, we
utilize tensor decomposition techniques as a preprocessing step to find a
low-rank approximation of images which can significantly discard high-frequency
perturbations. Recently a defense framework called Shield could "vaccinate"
Convolutional Neural Networks (CNN) against adversarial examples by performing
random-quality JPEG compressions on local patches of images on the ImageNet
dataset. Our tensor-based defense mechanism outperforms the SLQ method from
Shield by 14% against FastGradient Descent (FGSM) adversarial attacks, while
maintaining comparable speed.
- Abstract(参考訳): 近年の研究では、ディープニューラルネットワーク(DNN)のような機械学習アプローチが、敵の攻撃によって簡単に騙されることが示されている。
データの微妙で知覚できない摂動は、ディープニューラルネットワークの結果を変えることができる。
脆弱な機械学習メソッドを活用することで、特にセキュリティが重要な要因である領域において、多くの懸念が生まれます。
したがって、敵攻撃に対する防御機構を設計することが重要である。
画像分類のタスクでは、主に画像の高周波スペクトルにおいて、目立たない摂動が発生する。
本稿では, テンソル分解法を前処理として活用し, 高周波の摂動を著しく破棄できる画像の低ランク近似を求める。
最近、shieldと呼ばれる防衛フレームワークは、imagenetデータセット上の画像のローカルパッチでランダム品質のjpeg圧縮を行うことで、畳み込みニューラルネットワーク(cnn)を敵の例に対して「空にする」ことができる。
テンソルをベースとした防御機構は、FGSM(Fast Gradient Descent)攻撃に対してシールドのSLQ法を14%上回り、同等の速度を維持する。
関連論文リスト
- Defending Spiking Neural Networks against Adversarial Attacks through Image Purification [20.492531851480784]
Spiking Neural Networks(SNN)は、神経科学と機械学習のギャップを埋めることを目的としている。
SNNは畳み込みニューラルネットワークのような敵の攻撃に弱い。
本稿では,SNNの堅牢性を高めるための生物学的にインスパイアされた手法を提案する。
論文 参考訳(メタデータ) (2024-04-26T00:57:06Z) - SAIF: Sparse Adversarial and Imperceptible Attack Framework [7.025774823899217]
Sparse Adversarial and Interpretable Attack Framework (SAIF) と呼ばれる新しい攻撃手法を提案する。
具体的には、少数の画素で低次摂動を含む知覚不能な攻撃を設計し、これらのスパース攻撃を利用して分類器の脆弱性を明らかにする。
SAIFは、非常に受け入れ難い、解釈可能な敵の例を計算し、ImageNetデータセット上で最先端のスパース攻撃手法より優れている。
論文 参考訳(メタデータ) (2022-12-14T20:28:50Z) - Robust Real-World Image Super-Resolution against Adversarial Attacks [115.04009271192211]
準知覚不可能な雑音を持つ逆画像サンプルは、深層学習SRモデルを脅かす可能性がある。
本稿では,現実のSRに対して,潜在的な敵対的雑音をランダムに消去する頑健なディープラーニングフレームワークを提案する。
提案手法は敵攻撃に敏感であり,既存のモデルや防御よりも安定なSR結果を示す。
論文 参考訳(メタデータ) (2022-07-31T13:26:33Z) - Guided Diffusion Model for Adversarial Purification [103.4596751105955]
敵攻撃は、様々なアルゴリズムやフレームワークでディープニューラルネットワーク(DNN)を妨害する。
本稿では,GDMP ( Guided diffusion model for purification) と呼ばれる新しい精製法を提案する。
様々なデータセットにわたる包括的実験において,提案したGDMPは,敵対的攻撃によって引き起こされた摂動を浅い範囲に減少させることを示した。
論文 参考訳(メタデータ) (2022-05-30T10:11:15Z) - Detecting Adversaries, yet Faltering to Noise? Leveraging Conditional
Variational AutoEncoders for Adversary Detection in the Presence of Noisy
Images [0.7734726150561086]
条件変分オートエンコーダ(CVAE)は、知覚不能な画像摂動を検出するのに驚くほど優れている。
画像分類ネットワーク上での敵攻撃を検出するために,CVAEを効果的に利用する方法を示す。
論文 参考訳(メタデータ) (2021-11-28T20:36:27Z) - On the Adversarial Robustness of Quantized Neural Networks [2.0625936401496237]
モデル圧縮技術が敵対攻撃に対するAIアルゴリズムの堅牢性にどのように影響するかは不明である。
本稿では,最も一般的な圧縮手法である量子化がニューラルネットワークの対角的堅牢性に与える影響について検討する。
論文 参考訳(メタデータ) (2021-05-01T11:46:35Z) - Error Diffusion Halftoning Against Adversarial Examples [85.11649974840758]
敵対的な例には、深いニューラルネットワークを誤った予測にだますことができる慎重に作られた摂動が含まれます。
誤り拡散のハーフトン化に基づく新しい画像変換防御を提案し、逆転の例に対して防御するための逆転訓練と組み合わせます。
論文 参考訳(メタデータ) (2021-01-23T07:55:02Z) - Online Alternate Generator against Adversarial Attacks [144.45529828523408]
ディープラーニングモデルは、実際の画像に準知覚可能なノイズを加えることによって合成される敵の例に非常に敏感である。
対象ネットワークのパラメータをアクセスしたり変更したりする必要のない,ポータブルな防御手法であるオンライン代替ジェネレータを提案する。
提案手法は,入力画像のスクラッチから別の画像をオンライン合成することで,対向雑音を除去・破壊する代わりに機能する。
論文 参考訳(メタデータ) (2020-09-17T07:11:16Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z) - Towards Achieving Adversarial Robustness by Enforcing Feature
Consistency Across Bit Planes [51.31334977346847]
我々は、高ビット平面の情報に基づいて粗い印象を形成するためにネットワークを訓練し、低ビット平面を用いて予測を洗練させる。
異なる量子化画像間で学習した表現に一貫性を付与することにより、ネットワークの対角的ロバスト性が大幅に向上することを示した。
論文 参考訳(メタデータ) (2020-04-01T09:31:10Z) - Adversarial Attacks on Convolutional Neural Networks in Facial
Recognition Domain [2.4704085162861693]
Deep Neural Network(DNN)分類器を実生活で脆弱にする敵攻撃は、自動運転車、マルウェアフィルター、生体認証システムにおいて深刻な脅威となる。
我々はFast Gradient Sign Methodを適用し、顔画像データセットに摂動を導入し、異なる分類器で出力をテストする。
我々は、最小の敵対的知識を前提に、さまざまなブラックボックス攻撃アルゴリズムを顔画像データセット上に構築する。
論文 参考訳(メタデータ) (2020-01-30T00:25:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。