Predictive intraday correlations in stable and volatile market
environments: Evidence from deep learning
- URL: http://arxiv.org/abs/2002.10385v1
- Date: Mon, 24 Feb 2020 17:19:54 GMT
- Title: Predictive intraday correlations in stable and volatile market
environments: Evidence from deep learning
- Authors: Ben Moews and Gbenga Ibikunle
- Abstract summary: We apply deep learning to learn and exploit lagged correlations among S&P 500 stocks to compare model behaviour in stable and volatile markets.
Our findings show that accuracies, while remaining significant, decrease with shorter prediction horizons.
We discuss implications for modern finance theory and our work's applicability as an investigative tool for portfolio managers.
- Score: 2.741266294612776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Standard methods and theories in finance can be ill-equipped to capture
highly non-linear interactions in financial prediction problems based on
large-scale datasets, with deep learning offering a way to gain insights into
correlations in markets as complex systems. In this paper, we apply deep
learning to econometrically constructed gradients to learn and exploit lagged
correlations among S&P 500 stocks to compare model behaviour in stable and
volatile market environments, and under the exclusion of target stock
information for predictions. In order to measure the effect of time horizons,
we predict intraday and daily stock price movements in varying interval lengths
and gauge the complexity of the problem at hand with a modification of our
model architecture. Our findings show that accuracies, while remaining
significant and demonstrating the exploitability of lagged correlations in
stock markets, decrease with shorter prediction horizons. We discuss
implications for modern finance theory and our work's applicability as an
investigative tool for portfolio managers. Lastly, we show that our model's
performance is consistent in volatile markets by exposing it to the environment
of the recent financial crisis of 2007/2008.
Related papers
- Trading through Earnings Seasons using Self-Supervised Contrastive Representation Learning [1.6574413179773761]
Contrastive Earnings Transformer (CET) is a self-supervised learning approach rooted in Contrastive Predictive Coding (CPC)
Our research delves deep into the intricacies of stock data, evaluating how various models handle the rapidly changing relevance of earnings data over time and over different sectors.
CET's foundation on CPC allows for a nuanced understanding, facilitating consistent stock predictions even as the earnings data ages.
arXiv Detail & Related papers (2024-09-25T22:09:59Z) - DiffSTOCK: Probabilistic relational Stock Market Predictions using Diffusion Models [1.9662978733004601]
We develop an architecture for providing better market predictions conditioned on the historical financial indicators and inter-stock relations.
We also provide a novel deterministic architecture MaTCHS which uses Masked Transformer(RTM) to exploit inter-stock relations along with historical stock features.
arXiv Detail & Related papers (2024-03-21T01:20:32Z) - Financial Time-Series Forecasting: Towards Synergizing Performance And
Interpretability Within a Hybrid Machine Learning Approach [2.0213537170294793]
This paper propose a comparative study on hybrid machine learning algorithms and leverage on enhancing model interpretability.
For the interpretability, we carry out a systematic overview on the preprocessing techniques of time-series statistics, including decomposition, auto-correlational function, exponential triple forecasting, which aim to excavate latent relations and complex patterns appeared in the financial time-series forecasting.
arXiv Detail & Related papers (2023-12-31T16:38:32Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
We present a groundbreaking framework for financial market analysis.
This approach is the first to jointly model investor expectations and automatically mine latent stock relationships.
Our model consistently achieves an annual return exceeding 10%.
arXiv Detail & Related papers (2023-06-01T01:36:51Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Causal Analysis of Generic Time Series Data Applied for Market
Prediction [0.0]
We explore the applicability of the causal analysis based on temporally shifted (lagged) Pearson correlation applied to diverse time series of different natures.
The data involves various financial metrics computable from raw market data such as real-time trades and snapshots of the limit order book.
arXiv Detail & Related papers (2022-04-22T05:54:53Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
We have explored the relationship between sentiment extracted from financial news and tweets and FTSE100 movements.
The sentiment captured from news headlines could be used as a signal to predict market returns; the same does not apply for volatility.
We developed an accurate classifier for the prediction of market volatility in response to the arrival of new information.
arXiv Detail & Related papers (2020-12-10T01:15:48Z) - Empirical Study of Market Impact Conditional on Order-Flow Imbalance [0.0]
We show that for small signed order-flows, the price impact grows linearly with increase in the order-flow imbalance.
We have, further, implemented a machine learning algorithm to forecast market impact given a signed order-flow.
Our findings suggest that machine learning models can be used in estimation of financial variables.
arXiv Detail & Related papers (2020-04-17T14:58:29Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
Multiple time series such as financial indicators, stock prices and exchange rates are strongly coupled due to their dependence on the latent state of the market.
We focus on learning the relationships among financial time series by modelling them through a multi-output Gaussian process.
arXiv Detail & Related papers (2020-02-11T19:18:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.