Empirical Study of Market Impact Conditional on Order-Flow Imbalance
- URL: http://arxiv.org/abs/2004.08290v2
- Date: Fri, 24 Apr 2020 20:23:39 GMT
- Title: Empirical Study of Market Impact Conditional on Order-Flow Imbalance
- Authors: Anastasia Bugaenko
- Abstract summary: We show that for small signed order-flows, the price impact grows linearly with increase in the order-flow imbalance.
We have, further, implemented a machine learning algorithm to forecast market impact given a signed order-flow.
Our findings suggest that machine learning models can be used in estimation of financial variables.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this research, we have empirically investigated the key drivers affecting
liquidity in equity markets. We illustrated how theoretical models, such as
Kyle's model, of agents' interplay in the financial markets, are aligned with
the phenomena observed in publicly available trades and quotes data.
Specifically, we confirmed that for small signed order-flows, the price impact
grows linearly with increase in the order-flow imbalance. We have, further,
implemented a machine learning algorithm to forecast market impact given a
signed order-flow. Our findings suggest that machine learning models can be
used in estimation of financial variables; and predictive accuracy of such
learning algorithms can surpass the performance of traditional statistical
approaches.
Understanding the determinants of price impact is crucial for several
reasons. From a theoretical stance, modelling the impact provides a statistical
measure of liquidity. Practitioners adopt impact models as a pre-trade tool to
estimate expected transaction costs and optimize the execution of their
strategies. This further serves as a post-trade valuation benchmark as
suboptimal execution can significantly deteriorate a portfolio performance.
More broadly, the price impact reflects the balance of liquidity across
markets. This is of central importance to regulators as it provides an
all-encompassing explanation of the correlation between market design and
systemic risk, enabling regulators to design more stable and efficient markets.
Related papers
- When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
We have developed a multi-agent AI system called StockAgent, driven by LLMs.
The StockAgent allows users to evaluate the impact of different external factors on investor trading.
It avoids the test set leakage issue present in existing trading simulation systems based on AI Agents.
arXiv Detail & Related papers (2024-07-15T06:49:30Z) - DiffSTOCK: Probabilistic relational Stock Market Predictions using Diffusion Models [1.9662978733004601]
We develop an architecture for providing better market predictions conditioned on the historical financial indicators and inter-stock relations.
We also provide a novel deterministic architecture MaTCHS which uses Masked Transformer(RTM) to exploit inter-stock relations along with historical stock features.
arXiv Detail & Related papers (2024-03-21T01:20:32Z) - Electricity Price Forecasting in the Irish Balancing Market [0.0]
This work applies to the Irish balancing market a variety of price prediction techniques proven successful in the widely studied day-ahead market.
We compare statistical, machine learning, and deep learning models using a framework that investigates the impact of different training sizes.
An extensive numerical study shows that well-performing models in the day-ahead market do not perform well in the balancing one.
arXiv Detail & Related papers (2024-02-09T15:18:00Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Interpretability in Safety-Critical FinancialTrading Systems [15.060749321774136]
In 2020, some of the world's most sophisticated quant hedge funds suffered losses.
We implement a gradient-based approach for precisely stress-testing how a trading model's forecasts can be manipulated.
We find our approach discovers seemingly in-sample input settings that result in large negative shifts in return distributions.
arXiv Detail & Related papers (2021-09-24T17:05:58Z) - Measuring Financial Time Series Similarity With a View to Identifying
Profitable Stock Market Opportunities [12.101446195463591]
We describe a case-based reasoning approach to predicting stock market returns using only historical pricing data.
A key contribution of this work is the development of a novel similarity metric for comparing historical pricing data.
arXiv Detail & Related papers (2021-07-07T17:26:32Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
We have explored the relationship between sentiment extracted from financial news and tweets and FTSE100 movements.
The sentiment captured from news headlines could be used as a signal to predict market returns; the same does not apply for volatility.
We developed an accurate classifier for the prediction of market volatility in response to the arrival of new information.
arXiv Detail & Related papers (2020-12-10T01:15:48Z) - Predictive intraday correlations in stable and volatile market
environments: Evidence from deep learning [2.741266294612776]
We apply deep learning to learn and exploit lagged correlations among S&P 500 stocks to compare model behaviour in stable and volatile markets.
Our findings show that accuracies, while remaining significant, decrease with shorter prediction horizons.
We discuss implications for modern finance theory and our work's applicability as an investigative tool for portfolio managers.
arXiv Detail & Related papers (2020-02-24T17:19:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.