Efficient Quantum Circuit Decompositions via Intermediate Qudits
- URL: http://arxiv.org/abs/2002.10592v1
- Date: Mon, 24 Feb 2020 23:37:24 GMT
- Title: Efficient Quantum Circuit Decompositions via Intermediate Qudits
- Authors: Jonathan M. Baker, Casey Duckering, Frederic T. Chong
- Abstract summary: We show a method to generate ancilla out of idle qubits by placing some in higher-value states, called qudits.
Quantum computers will be resource-constrained for years to come so reducing ancilla requirements is crucial.
- Score: 5.377885520874246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many quantum algorithms make use of ancilla, additional qubits used to store
temporary information during computation, to reduce the total execution time.
Quantum computers will be resource-constrained for years to come so reducing
ancilla requirements is crucial. In this work, we give a method to generate
ancilla out of idle qubits by placing some in higher-value states, called
qudits. We show how to take a circuit with many $O(n)$ ancilla and design an
ancilla-free circuit with the same asymptotic depth. Using this, we give a
circuit construction for an in-place adder and a constant adder both with
$O(\log n)$ depth using temporary qudits and no ancilla.
Related papers
- Optimization and Synthesis of Quantum Circuits with Global Gates [44.99833362998488]
We use global interactions, such as the Global Molmer-Sorensen gate present in ion trap hardware, to optimize and synthesize quantum circuits.<n>The algorithm is based on the ZX-calculus and uses a specialized circuit extraction routine that groups entangling gates into Global MolmerSorensen gates.<n>We benchmark the algorithm in a variety of circuits, and show how it improves their performance under state-of-the-art hardware considerations.
arXiv Detail & Related papers (2025-07-28T10:25:31Z) - Fault-tolerant fermionic quantum computing [39.58317527488534]
We introduce fermionic fault-tolerant quantum computing, a framework which removes this overhead altogether.<n>We show how our framework can be implemented in neutral atoms, overcoming the apparent inability of neutral atoms to implement non-number-conserving gates.
arXiv Detail & Related papers (2024-11-13T19:00:02Z) - Realization of Constant-Depth Fan-Out with Real-Time Feedforward on a Superconducting Quantum Processor [33.096693427147535]
We demonstrate a quantum fan-out gate with real-time feedforward on up to four output qubits using a superconducting quantum processor.
Our work highlights the potential of mid-circuit measurements combined with real-time conditional operations to improve the efficiency of complex quantum algorithms.
arXiv Detail & Related papers (2024-09-11T03:40:24Z) - On the Constant Depth Implementation of Pauli Exponentials [49.48516314472825]
We decompose arbitrary exponentials into circuits of constant depth using $mathcalO(n)$ ancillae and two-body XX and ZZ interactions.
We prove the correctness of our approach, after introducing novel rewrite rules for circuits which benefit from qubit recycling.
arXiv Detail & Related papers (2024-08-15T17:09:08Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
arXiv Detail & Related papers (2024-05-14T15:28:37Z) - Quantum circuit for multi-qubit Toffoli gate with optimal resource [6.727984016678534]
We design new quantum circuits for the $n$-Toffoli gate and general multi-controlled unitary, which have only $O(log n)$-depth and $O(n)$-size.
We demonstrate that without the assistance of ancillary qubit, any quantum circuit implementation of multi-qubit Toffoli gate must employ exponential precision gates.
arXiv Detail & Related papers (2024-02-07T17:53:21Z) - A two-circuit approach to reducing quantum resources for the quantum lattice Boltzmann method [41.66129197681683]
Current quantum algorithms for solving CFD problems use a single quantum circuit and, in some cases, lattice-based methods.
We introduce the a novel multiple circuits algorithm that makes use of a quantum lattice Boltzmann method (QLBM)
The problem is cast as a stream function--vorticity formulation of the 2D Navier-Stokes equations and verified and tested on a 2D lid-driven cavity flow.
arXiv Detail & Related papers (2024-01-20T15:32:01Z) - Polylogarithmic-depth controlled-NOT gates without ancilla qubits [0.0]
Controlled operations are fundamental building blocks of quantum algorithms.
Decomposing $n$-control-NOT gates into arbitrary single-qubit and CNOT gates is a crucial but non-trivial task.
arXiv Detail & Related papers (2023-12-20T17:23:11Z) - Circuit Cutting with Non-Maximally Entangled States [59.11160990637615]
Distributed quantum computing combines the computational power of multiple devices to overcome the limitations of individual devices.
circuit cutting techniques enable the distribution of quantum computations through classical communication.
Quantum teleportation allows the distribution of quantum computations without an exponential increase in shots.
We propose a novel circuit cutting technique that leverages non-maximally entangled qubit pairs.
arXiv Detail & Related papers (2023-06-21T08:03:34Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Quantum State Preparation with Optimal Circuit Depth: Implementations
and Applications [10.436969366019015]
We show that any $Theta(n)$-depth circuit can be prepared with a $Theta(log(nd)) with $O(ndlog d)$ ancillary qubits.
We discuss applications of the results in different quantum computing tasks, such as Hamiltonian simulation, solving linear systems of equations, and realizing quantum random access memories.
arXiv Detail & Related papers (2022-01-27T13:16:30Z) - Reducing the Depth of Linear Reversible Quantum Circuits [0.0]
In quantum computing the decoherence time of the qubits determines the computation time available.
We propose a practical formulation of a divide and conquer algorithm that produces quantum circuits that are twice as shallow as those produced by existing algorithms.
Overall, we manage to consistently reduce the total depth of a class of reversible functions, with up to 92% savings in an ancilla-free case and up to 99% when ancillary qubits are available.
arXiv Detail & Related papers (2022-01-17T12:36:32Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Efficient ancilla-free reversible and quantum circuits for the Hidden
Weighted Bit function [7.140119152422295]
A common belief is that the Hidden Weighted Bit function is exponentially hard for implementation by reversible ancilla-free circuits.
We develop a reversible ancilla-free circuit of size $O(n6.42)$, where $n$ is the number of bits.
We also show that the function can be computed by a quantum ancilla-free circuit of size $O(n2)$.
arXiv Detail & Related papers (2020-07-10T16:30:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.