Calculating response functions of coupled oscillators using quantum phase estimation
- URL: http://arxiv.org/abs/2405.08694v1
- Date: Tue, 14 May 2024 15:28:37 GMT
- Title: Calculating response functions of coupled oscillators using quantum phase estimation
- Authors: Sven Danz, Mario Berta, Stefan Schröder, Pascal Kienast, Frank K. Wilhelm, Alessandro Ciani,
- Abstract summary: We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
- Score: 40.31060267062305
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer. The functional form of these response functions can be mapped to a corresponding eigenproblem of a Hermitian matrix $H$, thus suggesting the use of quantum phase estimation. Our proposed quantum algorithm operates in the standard $s$-sparse, oracle-based query access model. For a network of $N$ oscillators with maximum norm $\lVert H \rVert_{\mathrm{max}}$, and when the eigenvalue tolerance $\varepsilon$ is much smaller than the minimum eigenvalue gap, we use $\mathcal{O}(\log(N s \lVert H \rVert_{\mathrm{max}}/\varepsilon)$ algorithmic qubits and obtain a rigorous worst-case query complexity upper bound $\mathcal{O}(s \lVert H \rVert_{\mathrm{max}}/(\delta^2 \varepsilon) )$ up to logarithmic factors, where $\delta$ denotes the desired precision on the coefficients appearing in the response functions. Crucially, our proposal does not suffer from the infamous state preparation bottleneck and can as such potentially achieve large quantum speedups compared to relevant classical methods. As a proof-of-principle of exponential quantum speedup, we show that a simple adaptation of our algorithm solves the random glued-trees problem in polynomial time. We discuss practical limitations as well as potential improvements for quantifying finite size, end-to-end complexities for application to relevant instances.
Related papers
- Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.
This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.
Even with sublinear barriers, we use Feynman-Kac techniques to lift classical to quantum ones establishing tight lower bound $T_mathrmmix = 2Omega(nalpha)$.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - An efficient quantum algorithm for generation of ab initio n-th order susceptibilities for non-linear spectroscpies [0.13980986259786224]
We develop and analyze a fault-tolerant quantum algorithm for computing $n$-th order response properties.
We use a semi-classical description in which the electronic degrees of freedom are treated quantum mechanically and the light is treated as a classical field.
arXiv Detail & Related papers (2024-04-01T20:04:49Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Quantum Phase Estimation by Compressed Sensing [0.0]
We present a new Heisenberg-limited quantum phase estimation algorithm for early quantum computers based on compressed sensing.
Our algorithm is able to recover the frequency with a total runtime $mathcalO(epsilon-1textpolylog(epsilon-1))$, where $epsilon$ is the accuracy.
We also consider the more general quantum eigenvalue estimation problem (QEEP) and show numerically that the off-grid compressed sensing can be a strong candidate for solving the QEEP.
arXiv Detail & Related papers (2023-06-12T10:21:59Z) - Quantum Algorithms for Sampling Log-Concave Distributions and Estimating
Normalizing Constants [8.453228628258778]
We develop quantum algorithms for sampling logconcave distributions and for estimating their normalizing constants.
We exploit quantum analogs of the Monte Carlo method and quantum walks.
We also prove a $1/epsilon1-o(1)$ quantum lower bound for estimating normalizing constants.
arXiv Detail & Related papers (2022-10-12T19:10:43Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
The threshold theorem is a fundamental result in the theory of fault-tolerant quantum computation.
We prove an exponential upper bound on the maximal length of fault-tolerant quantum computation with amplitude noise.
arXiv Detail & Related papers (2022-01-31T22:19:49Z) - Estimating Gibbs partition function with quantumClifford sampling [6.656454497798153]
We develop a hybrid quantum-classical algorithm to estimate the partition function.
Our algorithm requires only a shallow $mathcalO(1)$-depth quantum circuit.
Shallow-depth quantum circuits are considered vitally important for currently available NISQ (Noisy Intermediate-Scale Quantum) devices.
arXiv Detail & Related papers (2021-09-22T02:03:35Z) - Enhancing the Quantum Linear Systems Algorithm using Richardson
Extrapolation [0.8057006406834467]
We present a quantum algorithm to solve systems of linear equations of the form $Amathbfx=mathbfb$.
The algorithm achieves an exponential improvement with respect to $N$ over classical methods.
arXiv Detail & Related papers (2020-09-09T18:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.