On Reinforcement Learning for Turn-based Zero-sum Markov Games
- URL: http://arxiv.org/abs/2002.10620v1
- Date: Tue, 25 Feb 2020 01:40:31 GMT
- Title: On Reinforcement Learning for Turn-based Zero-sum Markov Games
- Authors: Devavrat Shah, Varun Somani, Qiaomin Xie, Zhi Xu
- Abstract summary: We consider the problem of finding Nash equilibrium for two-player turn-based zero-sum games.
Inspired by the AlphaGo Zero (AGZ) algorithm, we develop a Reinforcement Learning based approach.
- Score: 24.071036229246644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of finding Nash equilibrium for two-player turn-based
zero-sum games. Inspired by the AlphaGo Zero (AGZ) algorithm, we develop a
Reinforcement Learning based approach. Specifically, we propose
Explore-Improve-Supervise (EIS) method that combines "exploration", "policy
improvement"' and "supervised learning" to find the value function and policy
associated with Nash equilibrium. We identify sufficient conditions for
convergence and correctness for such an approach. For a concrete instance of
EIS where random policy is used for "exploration", Monte-Carlo Tree Search is
used for "policy improvement" and Nearest Neighbors is used for "supervised
learning", we establish that this method finds an $\varepsilon$-approximate
value function of Nash equilibrium in $\widetilde{O}(\varepsilon^{-(d+4)})$
steps when the underlying state-space of the game is continuous and
$d$-dimensional. This is nearly optimal as we establish a lower bound of
$\widetilde{\Omega}(\varepsilon^{-(d+2)})$ for any policy.
Related papers
- Policy Mirror Ascent for Efficient and Independent Learning in Mean
Field Games [35.86199604587823]
Mean-field games have been used as a theoretical tool to obtain an approximate Nash equilibrium for symmetric and anonymous $N$-player games.
We show that $N$ agents running policy mirror ascent converge to the Nash equilibrium of the regularized game within $widetildemathcalO(varepsilon-2)$ samples.
arXiv Detail & Related papers (2022-12-29T20:25:18Z) - Minimax-Optimal Multi-Agent RL in Zero-Sum Markov Games With a
Generative Model [50.38446482252857]
Two-player zero-sum Markov games are arguably the most basic setting in multi-agent reinforcement learning.
We develop a learning algorithm that learns an $varepsilon$-approximate Markov NE policy using $$ widetildeObigg.
We derive a refined regret bound for FTRL that makes explicit the role of variance-type quantities.
arXiv Detail & Related papers (2022-08-22T17:24:55Z) - Model-Based Reinforcement Learning for Offline Zero-Sum Markov Games [18.832436856339587]
This paper makes progress towards learning Nash equilibria in two-player zero-sum Markov games from offline data.
We propose a pessimistic model-based algorithm with Bernstein-style lower confidence bounds -- called VI-LCB-Game.
arXiv Detail & Related papers (2022-06-08T17:58:06Z) - Independent Policy Gradient for Large-Scale Markov Potential Games:
Sharper Rates, Function Approximation, and Game-Agnostic Convergence [30.084357461497042]
We learn a Nash equilibrium of an MPG in which the size of state space and/or the number of players can be very large.
We propose new independent policy gradient algorithms that are run by all players in tandem.
We identify a class of independent policy gradient algorithms that enjoys convergence for both zero-sum Markov games and Markov cooperative games with the players that are oblivious to the types of games being played.
arXiv Detail & Related papers (2022-02-08T20:09:47Z) - Near-Optimal Learning of Extensive-Form Games with Imperfect Information [54.55092907312749]
We present the first line of algorithms that require only $widetildemathcalO((XA+YB)/varepsilon2)$ episodes of play to find an $varepsilon$-approximate Nash equilibrium in two-player zero-sum games.
This improves upon the best known sample complexity of $widetildemathcalO((X2A+Y2B)/varepsilon2)$ by a factor of $widetildemathcalO(maxX,
arXiv Detail & Related papers (2022-02-03T18:18:28Z) - Learning Stationary Nash Equilibrium Policies in $n$-Player Stochastic
Games with Independent Chains [2.132096006921048]
We consider a class of $n$-player games in which players have their own internal state/action spaces while they are coupled through their payoff functions.
For this class of games, we first show that finding a stationary Nash (NE) policy without any assumption on the reward functions is interactable.
We develop algorithms based on dual averaging and dual mirror descent, which converge to the set of $epsilon$-NE policies.
arXiv Detail & Related papers (2022-01-28T16:27:21Z) - Almost Optimal Algorithms for Two-player Markov Games with Linear
Function Approximation [92.99933928528797]
We study reinforcement learning for two-player zero-sum Markov games with simultaneous moves.
We propose an algorithm Nash-UCRL-VTR based on the principle "Optimism-in-Face-of-Uncertainty"
We show that Nash-UCRL-VTR can provably achieve an $tildeO(dHsqrtT)$ regret, where $d$ is the linear function dimension.
arXiv Detail & Related papers (2021-02-15T09:09:16Z) - Improved Sample Complexity for Incremental Autonomous Exploration in
MDPs [132.88757893161699]
We learn the set of $epsilon$-optimal goal-conditioned policies attaining all states that are incrementally reachable within $L$ steps.
DisCo is the first algorithm that can return an $epsilon/c_min$-optimal policy for any cost-sensitive shortest-path problem.
arXiv Detail & Related papers (2020-12-29T14:06:09Z) - Provable Fictitious Play for General Mean-Field Games [111.44976345867005]
We propose a reinforcement learning algorithm for stationary mean-field games.
The goal is to learn a pair of mean-field state and stationary policy that constitutes the Nash equilibrium.
arXiv Detail & Related papers (2020-10-08T18:46:48Z) - Near-Optimal Reinforcement Learning with Self-Play [50.29853537456737]
We focus on self-play algorithms which learn the optimal policy by playing against itself without any direct supervision.
We propose an optimistic variant of the emphNash Q-learning algorithm with sample complexity $tildemathcalO(SAB)$, and a new emphNash V-learning algorithm with sample complexity $tildemathcalO(S(A+B))$.
arXiv Detail & Related papers (2020-06-22T05:00:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.