Near-Optimal Reinforcement Learning with Self-Play
- URL: http://arxiv.org/abs/2006.12007v2
- Date: Tue, 14 Jul 2020 04:21:16 GMT
- Title: Near-Optimal Reinforcement Learning with Self-Play
- Authors: Yu Bai, Chi Jin, Tiancheng Yu
- Abstract summary: We focus on self-play algorithms which learn the optimal policy by playing against itself without any direct supervision.
We propose an optimistic variant of the emphNash Q-learning algorithm with sample complexity $tildemathcalO(SAB)$, and a new emphNash V-learning algorithm with sample complexity $tildemathcalO(S(A+B))$.
- Score: 50.29853537456737
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers the problem of designing optimal algorithms for
reinforcement learning in two-player zero-sum games. We focus on self-play
algorithms which learn the optimal policy by playing against itself without any
direct supervision. In a tabular episodic Markov game with $S$ states, $A$
max-player actions and $B$ min-player actions, the best existing algorithm for
finding an approximate Nash equilibrium requires $\tilde{\mathcal{O}}(S^2AB)$
steps of game playing, when only highlighting the dependency on $(S,A,B)$. In
contrast, the best existing lower bound scales as $\Omega(S(A+B))$ and has a
significant gap from the upper bound. This paper closes this gap for the first
time: we propose an optimistic variant of the \emph{Nash Q-learning} algorithm
with sample complexity $\tilde{\mathcal{O}}(SAB)$, and a new \emph{Nash
V-learning} algorithm with sample complexity $\tilde{\mathcal{O}}(S(A+B))$. The
latter result matches the information-theoretic lower bound in all
problem-dependent parameters except for a polynomial factor of the length of
each episode. In addition, we present a computational hardness result for
learning the best responses against a fixed opponent in Markov games---a
learning objective different from finding the Nash equilibrium.
Related papers
- Model-Based Reinforcement Learning for Offline Zero-Sum Markov Games [18.832436856339587]
This paper makes progress towards learning Nash equilibria in two-player zero-sum Markov games from offline data.
We propose a pessimistic model-based algorithm with Bernstein-style lower confidence bounds -- called VI-LCB-Game.
arXiv Detail & Related papers (2022-06-08T17:58:06Z) - Near-Optimal Learning of Extensive-Form Games with Imperfect Information [54.55092907312749]
We present the first line of algorithms that require only $widetildemathcalO((XA+YB)/varepsilon2)$ episodes of play to find an $varepsilon$-approximate Nash equilibrium in two-player zero-sum games.
This improves upon the best known sample complexity of $widetildemathcalO((X2A+Y2B)/varepsilon2)$ by a factor of $widetildemathcalO(maxX,
arXiv Detail & Related papers (2022-02-03T18:18:28Z) - Doubly Optimal No-Regret Online Learning in Strongly Monotone Games with Bandit Feedback [29.553652241608997]
We study the class of textitsmooth and strongly monotone games and study optimal no-regret learning therein.
We first construct a new bandit learning algorithm and show that it achieves the single-agent optimal regret of $tildeTheta(nsqrtT)$.
Our results thus settle this open problem and contribute to the broad landscape of bandit game-theoretical learning.
arXiv Detail & Related papers (2021-12-06T08:27:54Z) - When Can We Learn General-Sum Markov Games with a Large Number of
Players Sample-Efficiently? [10.397170312149067]
This paper investigates what learning goals admit better sample complexities in the setting of $m$-player general-sum Markov games.
First, we design algorithms for learning an $epsilon$-Coarse Correlated Equilibrium (CCE) in $widetildemathcalO(H5Smax_ile m A_i / epsilon2)$ episodes.
Second, we consider the important special case of Markov Potential Games, and design an algorithm that learns an $epsilon$-approximate Nash equilibrium within $widet
arXiv Detail & Related papers (2021-10-08T15:06:22Z) - Towards General Function Approximation in Zero-Sum Markov Games [126.58493169301012]
This paper considers two-player zero-sum finite-horizon Markov games with simultaneous moves.
Provably efficient algorithms for both decoupled and coordinated settings are developed.
arXiv Detail & Related papers (2021-07-30T15:25:13Z) - Almost Optimal Algorithms for Two-player Markov Games with Linear
Function Approximation [92.99933928528797]
We study reinforcement learning for two-player zero-sum Markov games with simultaneous moves.
We propose an algorithm Nash-UCRL-VTR based on the principle "Optimism-in-Face-of-Uncertainty"
We show that Nash-UCRL-VTR can provably achieve an $tildeO(dHsqrtT)$ regret, where $d$ is the linear function dimension.
arXiv Detail & Related papers (2021-02-15T09:09:16Z) - A Sharp Analysis of Model-based Reinforcement Learning with Self-Play [49.88233710867315]
We present a sharp analysis of model-based self-play algorithms for multi-agent Markov games.
We design an algorithm -- Optimistic Nash Value Iteration (Nash-VI) for two-player zero-sum Markov games.
We further adapt our analysis to designing a provably efficient task-agnostic algorithm for zero-sum Markov games.
arXiv Detail & Related papers (2020-10-04T15:27:39Z) - Learning Zero-Sum Simultaneous-Move Markov Games Using Function
Approximation and Correlated Equilibrium [116.56359444619441]
We develop provably efficient reinforcement learning algorithms for two-player zero-sum finite-horizon Markov games.
In the offline setting, we control both players and aim to find the Nash Equilibrium by minimizing the duality gap.
In the online setting, we control a single player playing against an arbitrary opponent and aim to minimize the regret.
arXiv Detail & Related papers (2020-02-17T17:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.