論文の概要: Denoising IMU Gyroscopes with Deep Learning for Open-Loop Attitude
Estimation
- arxiv url: http://arxiv.org/abs/2002.10718v2
- Date: Fri, 26 Jun 2020 07:43:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-28 22:05:32.954252
- Title: Denoising IMU Gyroscopes with Deep Learning for Open-Loop Attitude
Estimation
- Title(参考訳): IMUジャイロスコープの深層学習による開ループ姿勢推定
- Authors: Martin Brossard (CAOR), Silvere Bonnabel (UNC), Axel Barrau (CAOR)
- Abstract要約: 本稿では,慣性計測ユニット(IMU)のジャイロスコープを地中真実データを用いて識別する学習手法を提案する。
得られたアルゴリズムは、(目に見えない)テストシーケンスで最先端の処理を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a learning method for denoising gyroscopes of Inertial
Measurement Units (IMUs) using ground truth data, and estimating in real time
the orientation (attitude) of a robot in dead reckoning. The obtained algorithm
outperforms the state-of-the-art on the (unseen) test sequences. The obtained
performances are achieved thanks to a well-chosen model, a proper loss function
for orientation increments, and through the identification of key points when
training with high-frequency inertial data. Our approach builds upon a neural
network based on dilated convolutions, without requiring any recurrent neural
network. We demonstrate how efficient our strategy is for 3D attitude
estimation on the EuRoC and TUM-VI datasets. Interestingly, we observe our dead
reckoning algorithm manages to beat top-ranked visual-inertial odometry systems
in terms of attitude estimation although it does not use vision sensors. We
believe this paper offers new perspectives for visual-inertial localization and
constitutes a step toward more efficient learning methods involving IMUs. Our
open-source implementation is available at
https://github.com/mbrossar/denoise-imu-gyro.
- Abstract(参考訳): 本稿では,地上真理データを用いて慣性測定単位(imus)のジャイロスコープを推定し,死推定中のロボットの方向(姿勢)をリアルタイムに推定する学習手法を提案する。
得られたアルゴリズムは、(予期せぬ)テストシーケンスの最先端を上回っている。
得られた性能は、高頻度慣性データを用いたトレーニングにおけるキーポイントの識別により、ウェル・チョーゼンモデル、方位インクリメントの適切な損失関数により達成される。
我々のアプローチは、リカレントニューラルネットワークを必要とせず、拡張畳み込みに基づくニューラルネットワークの上に構築されている。
我々はEuRoCとTUM-VIデータセットの3次元姿勢推定がいかに効果的かを示す。
興味深いことに、我々のデッドリコンシングアルゴリズムは、視覚センサを使用しないにもかかわらず、姿勢推定の観点からトップランクの視覚慣性オドメトリシステムを打ち負かしている。
本稿では,視覚-慣性ローカライゼーションのための新たな視点を提供し,IMUを含むより効率的な学習方法の一歩となると信じている。
当社のオープンソース実装はhttps://github.com/mbrossar/denoise-imu-gyroで利用可能です。
関連論文リスト
- Deep Homography Estimation for Visual Place Recognition [49.235432979736395]
本稿では,変換器を用いたディープホモグラフィー推定(DHE)ネットワークを提案する。
バックボーンネットワークによって抽出された濃密な特徴写像を入力とし、高速で学習可能な幾何的検証のためにホモグラフィーに適合する。
ベンチマークデータセットを用いた実験により,本手法はいくつかの最先端手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-02-25T13:22:17Z) - DUCK: Distance-based Unlearning via Centroid Kinematics [40.2428948628001]
本研究は,Centroid Kinematics (DUCK) による遠隔学習(Distance-based Unlearning)と呼ばれる新しいアンラーニングアルゴリズムを導入する。
アルゴリズムの性能評価は、様々なベンチマークデータセットにまたがって行われる。
また,適応学習スコア (Adaptive Unlearning Score, AUS) と呼ばれる新しい指標を導入し, 対象データに対する未学習プロセスの有効性だけでなく, 元のモデルに対する性能損失の定量化も行った。
論文 参考訳(メタデータ) (2023-12-04T17:10:25Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
骨格に基づく行動認識のための適応的局所成分認識グラフ畳み込みネットワークを提案する。
我々の手法はグローバルな埋め込みよりも強力な表現を提供し、我々のモデルが最先端に到達するのに役立ちます。
論文 参考訳(メタデータ) (2022-09-21T02:33:07Z) - EMA-VIO: Deep Visual-Inertial Odometry with External Memory Attention [5.144653418944836]
視覚慣性オドメトリー(VIO)アルゴリズムは、カメラと慣性センサーからの情報を利用して位置と翻訳を推定する。
最近のディープラーニングベースのVIOモデルは、データ駆動方式でポーズ情報を提供するため、注目を集めている。
状態推定のための視覚的特徴と慣性的特徴を効果的かつ効率的に組み合わせた,外部記憶に配慮した新しい学習ベースのVIOフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-18T07:05:36Z) - Efficient Deep Visual and Inertial Odometry with Adaptive Visual
Modality Selection [12.754974372231647]
本稿では,適応型深層学習に基づくVIO手法を提案する。
Gumbel-Softmax のトリックを用いてポリシーネットワークをトレーニングし、エンドツーエンドのシステムトレーニングで決定プロセスを差別化できるようにする。
実験結果から,本手法は全モードベースラインと同じような,あるいはさらに優れた性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-05-12T16:17:49Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - FG-Net: Fast Large-Scale LiDAR Point CloudsUnderstanding Network
Leveraging CorrelatedFeature Mining and Geometric-Aware Modelling [15.059508985699575]
FG-Netは、Voxelizationなしで大規模ポイントクラウドを理解するための一般的なディープラーニングフレームワークです。
相関型特徴マイニングと変形性畳み込みに基づく幾何認識モデルを用いた深層畳み込みニューラルネットワークを提案する。
我々のアプローチは精度と効率の点で最先端のアプローチを上回っている。
論文 参考訳(メタデータ) (2020-12-17T08:20:09Z) - Applications of Koopman Mode Analysis to Neural Networks [52.77024349608834]
我々は,ニューラルネットワークのトレーニング過程を,高次元の重み空間に作用する力学系と考える。
アーキテクチャに必要なレイヤ数を決定するために、Koopmanスペクトルをどのように利用できるかを示す。
また、Koopmanモードを使えば、ネットワークを選択的にプーンしてトレーニング手順を高速化できることを示す。
論文 参考訳(メタデータ) (2020-06-21T11:00:04Z) - Auto-Rectify Network for Unsupervised Indoor Depth Estimation [119.82412041164372]
ハンドヘルド環境に現れる複雑な自我運動が,学習深度にとって重要な障害であることが確認された。
本稿では,相対回転を除去してトレーニング画像の修正を効果的に行うデータ前処理手法を提案する。
その結果、従来の教師なしSOTA法よりも、難易度の高いNYUv2データセットよりも優れていた。
論文 参考訳(メタデータ) (2020-06-04T08:59:17Z) - A Deep Learning Method for Complex Human Activity Recognition Using
Virtual Wearable Sensors [22.923108537119685]
センサに基づくヒューマンアクティビティ認識(HAR)は、現在、複数のアプリケーション領域で研究ホットスポットとなっている。
本研究では,実シーンにおける複雑なHARの深層学習に基づく新しい手法を提案する。
提案手法は驚くほど数イテレーションで収束し、実際のIMUデータセット上で91.15%の精度が得られる。
論文 参考訳(メタデータ) (2020-03-04T03:31:23Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
慣性測定ユニット(IMU)は小型で安価でエネルギー効率が良く、スマートデバイスや移動ロボットに広く使われている。
正確で信頼性の高い歩行者ナビゲーションをサポートするために慣性データをエクスプロイトすることは、新しいインターネット・オブ・シングス・アプリケーションやサービスにとって重要なコンポーネントである。
我々は、深層学習に基づく慣性ナビゲーション研究のための最初の公開データセットであるOxIOD(OxIOD)を提示、リリースする。
論文 参考訳(メタデータ) (2020-01-13T04:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。